ФОРМИРОВАНИЕ СИГНАЛОВ ТЕКУЩИХ ТРАЕКТОРИЙ В АВТОМАТИЗИРОВАННОЙ СИСТЕМЕ МОДАЛЬНОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ БЕСПИЛОТНЫХ ТРАНСПОРТНЫХ СРЕДСТВ В УСЛОВИЯХ ОТКРЫТЫХ ГОРНЫХ РАБОТ
Аннотация и ключевые слова
Аннотация (русский):
Определен объект управления в виде сигналов текущих траекторий (ТТ), по которым перемещаются беспилотные транспортные средства (БТС). Описана предметная область исследований – принцип и технология формирования сигналов, создаваемых автоматизи-рованной системой для модального управления БТС при их передвижении по карьерным маршрутам. С целью выработки процедур идентификации предстоящей траектории БТС при объезде статических или динамических препятствий в программно-аппаратный ком-плекс заложены условия формирования соответствующего траекторного направления БТС на основе назначенных синусоидально подобных частотно-время-зависимых функций (чирп-сигналов), отвечающих за перенаправление БТС по той или иной траектории. За-креплены соответствующие чирп-сигналы для левой и правой девиационной траектории БТС. Введено понятие спорадических возмущений и принудительно-модальных переходных процессов (ПП). Рассмотрено также новое описание ПП, сигнал которого содержит варьируемую частоту, изменяющуюся по определенному закону в зависимости от направ-ления и характера предстоящей девиации ТТ и окружающей БТС обстановки. Объясняются причины и сущность эффектов структурной и параметрической нестационарности объекта управления (ОУ). Представлены аналитическая и графическая интерпретации возникающей нестационарности, обусловленной введением в ОУ дополнительных полюсов ста-ционарного и динамического типов. Отмечено, что стационарные полюсы характеризуют инерционность апериодических компонент траекторных чирп-сигналов, а динамические определяют перманентно варьируемую частоту переходных процессов (их чирп-форму). Охарактеризованы свойства локализованных на комплексной плоскости полюсов как спорадических ПП, так и принудительно-модальных. Определены тарировочные характеристики, устанавливающие связь между мгновенной частотой ПП и метрической девиацией ТТ БТС относительно номинальной осевой траектории. Функционально выделено и рассмотрено отличие между процедурами локализации и релокализации полюсов для модальных восходящих и нисходящих обратных ПП, от которых зависит оперативность и без-опасность перемещающихся по карьерным маршрутам БТС. Рассмотренные процедуры позволяют осуществлять online-мониторинг и эффективное управление динамикой оперативного и безопасного траекторного перемещения БТС по технологическим маршрутам карьера в условиях открытых горных работ

Ключевые слова:
беспилотные транспортные средства, текущие траектории, номинальная осевая траектория, чирп-сигнал, спорадические возмущения, принудительно-модальный процесс, вейвлет-карта, структурно-параметрическая нестационарность
Текст
Текст (PDF): Читать Скачать

Введение В процессе управления траекторными сигналами, т. е. сигналами, с помощью которых создаются текущие траектории перемещения беспилотного транспортного средства (БТС), бортовая автоматизированная система управления [1] непрерывно формирует и подает управляющее воздействие на систему электромеханической части БТС, состоящей из рулевого механизма (исполняющего роль исполнительного механизма системы управления), электропривода ходовой части БТС (регулирующего органа системы) и ходового колесного механизма, приводя объект управления в виде сигналов текущей траектории (ТТ) к номинальному состоянию, т. е. к сигналу, соответствующему номинальной осевой траектории (НОТ). Таким образом, в системе управления возникают нестационарные процессы (режимы) траекторных сигналов, при отработке которых автоматизированной системой БТС формируются текущие траектории перемещения автосамосвала в процессе его «рыскания» или целенаправленного передвижения по определенным девиационным траекториям относительно НОТ. С целью идентификации предстоящего формирования текущей девиационной траектории БТС при объезде какого-либо препятствия или при движении по искривленным маршрутам в программно-аппаратный комплекс системы заложены условия соответствия требуемого направления определенным одномерным синусоидальноподобным сигналам с время-зависимой частотой (чирп-сигналам) [1, 2]. Так, отклонению ТТ влево от НОТ ставится в соответствие чирп-сигнал с падающей по определенному закону время-зависимой частотой, а девиации ТТ вправо от НОТ – с возрастающей. Характеристика нестационарности объекта управления В процессе перемещения БТС по рабочему маршруту на пути автосамосвала могут возникать разного рода препятствия, которые бортовая система управления с помощью лидарно-ра- дарно-сонарного устройства обнаруживает в зоне своей «видимости». Это могут быть препятствия как стационарного, так и динамического характера: временно установленные технические средства в виде осветительных опор, электротехнические распределительные устройства с воздушным или кабельным отведением, иные статические препятствия (негабаритные куски породы или полезного ископаемого), а также группы людей или встречные транспортные средства на проезжей части уступа. Поэтому необходимость возможности формирования для БТС девиационных ТТ системой управления обусловлена требованием преодолевать разного рода препятствия путем изменения ТТ перемещения БТС – ее отклонения от НОТ. При этом такие возникающие время от времени возмущения в составе траекторных сигналов уместно назвать спорадическими. Формирование девиационной траектории БТС (ДТ БТС) производится за счет варьирования частоты траекторного сигнала (т. е. частоты чирп-сигнала, формирующего ДТ БТС) в переходном режиме, что, в конечном счете, приводит процесс начального отклонения ТТ БТС к новому установившемуся частотному режиму, который не соответствует сигналу, характеризующему НОТ. При этом девиация ТТ может происходить как влево от НОТ, так и вправо от нее. В связи с этим стабилизация чирп-сигнала для левой девиационной ТТ (ЛДТ) происходит на уменьшенной частоте, а правой (ПДТ) – на возросшей. Для реализации процедуры возврата ТТ к НОТ в том и другом случаях требуется воздействовать на внутреннюю структуру замкнутой системы автоматического управления так, чтобы изменить структурные и параметрические характеристики системы управления. Следовательно, для формирования начального и конечного участков полной ДТ БТС необходимо создать условия, с одной стороны, для реализации отклика на автономно-спорадическое возмущение, являющееся причиной возникновения начального участка ДТ БТС, с другой, для компенсации возникшего отклонения ДТ от линии НОТ средствами принудительно-модального управления при структурно-параметрической нестационарности за счет введения дополнительных полюсов и изменения стационарно-динамического размещения на комплексной плоскости всего облака полюсов системы [3, 4]. На рис. 1 отображены два варианта размещения полюсов объекта управления, характеризующие так называемые «обратные переходные процессы», которые соответствуют конечным участкам ДТ БТС восходящего и нисходящего типов при модальном управлении [3–5]. а б Рис. 1. Схематичное размещение закрепленных на комплексной плоскости вещественных полюсов Sp4, Sp5, Sp6, определяющих инерционность переходных процессов, и мнимых полюсов Sp2, Sp3 с изменяющейся во времени локализацией, формирующих частотное изменение восходящего (а) и нисходящего (б) переходных процессов для конечных участков ЛДТ и ПДТ БТС соответственно На рис. 1, а представлены статичные («якорные») полюсы Sp4, Sp5 и Sp6, которые определяют инерционные свойства переходного процесса в виде апериодической функции второго порядка [3]. Здесь мнимые полюсы Sp2, Sp3 определяют характер сигнала с непрерывно варьируемой частотой, создающего конечный участок левой девиационной траектории (ЛДТ), в виде скалярного чирп-сигнала. На рис. 1, а для восходящего обратного переходного процесса (ВОПП) дополнительно возникающие полюсы Sp5 и Sp6, соответствующие постоянным времени T1 и T2 ˂ T1, назначаются системой динамического модального управления фиксированными на комплексной плоскости. Эти полюсы создают двухэкспоненциальную апериодическую компоненту траекторного сигнала конечного участка ЛДТ, компенсирующего девиацию ТТ от номинальной осевой и, как следствие, приводящего в итоге к перемещению БТС по НОТ. Нулевой полюс Sp4 соответствует ступенчатому воздействию, создающему апериодический процесс для ТТ БТС, а полюс Sp1 характеризует постоянную составляющую нецентрированного сигнала ТТ. Чирп-характер переменной составляющей сигнала, формирующего конечный участок ЛДТ, определяется сопряженными полюсами Sp2, Sp3, непрерывно расходящимися по мнимой оси. При этом возрастает мгновенная частота чирп-сигнала, создавая ВОПП в системе, что, в свою очередь, инициирует формирование конечного участка ЛДТ, возвращая БТС к перемещению по НОТ. На рис. 1, б полюс Sp4 (инвариантный по времени процесса перемещения БТС), определяемый постоянной времени T, задает инерционность нисходящего одноэкспоненциального процесса по типу импульсной переходной характеристики апериодики первого порядка [3]. Пара мнимых полюсов Sp2, Sp3 сходится, формируя нисходящий по частоте чирп-сигнал, создающий конечный участок правой ДТ. Такой процесс изменения траекторного сигнала именуется нисходящим обратным переходным процессом (НОПП). В терминах перемещения БТС по маршруту это соответствует постепенному выходу БТС по ПДТ на НОТ. Таким образом, при девиации ТТ вправо от НОТ, приводящей к повышению частоты траекторного сигнала, необходимо – с целью стабилизации режима движения БТС по осевой линии – снизить общий коэффициент передачи замкнутой системы, а также уменьшить значение мнимой сопряженной пары полюсов. Что касается обратного переходного процесса при старт-стопном режиме перемещения БТС, то снижать значение мнимых полюсов следует только для наиболее мощных субгармоник первой гармоники Фурье-модели. Модель при этом имеет вид B1 sin ω1t + + A1 cos ω1t. Режекция высших гармоник выполняется средствами низкочастотной фильтрации. Отметим, что в базах данных структур набора полюсов объекта управления (ОУ), т. е. ТТ-сигналов, подсистем автономного и внешнего управления (ПСАУ и ПСВУ) содержатся следующие совокупности полюсов: – для одного БТС при его девиации влево/вправо от НОТ при ВППП число полюсов возрастает с 2 до 5 (при центрированном ТТ-сигнале); – для одного БТС при восстанавливающей НОТ ТТ (т. е. при НОПП) число полюсов увеличивается с 2 до 3. В общем случае при NБТС, находящихся на рабочих маршрутах, число полюсов для траекторных сигналов, с которым надлежит работать автоматизированной системе управления, вычисляется так: – в режиме ВППП: Np↑ = NБТС ∙ (2–5); – в режиме НОПП: Np↓ = NБТС ∙ (2–3). Следовательно, с увеличением числа полюсов в составе ОУ в виде центрированного ТТ-сигнала в системе возникает эффект структурной нестационарности, поскольку меняется порядок изображения сигнала – порядок модели ОУ. При варьировании же значений пары мнимых сопряженных полюсов, приводящем к изменению частоты чирп-сигнала ТТ БТС, возникает эффект параметрической нестационарности. Модальное управление текущими траекториями С целью формирования ДТ БТС нами использован подход на основе ранее разработанной концепции управления процессами дозирования в условиях структурно-параметрической нестационарности [5]. При реализации ВОПП, отвечающего за формирование конечного участка левосторонней девиации ТТ на основе модального управления, восстановление номинального режима перемещения БТС производится по зависимости вида [3] x(t)b/ei = x(t)0b/ei + x(t)mb/ei sin[2πfvar(t – τb) – φ0], где fvar = = fb[1(t – τb)] + (fe – fb) ([1(t – τe)] – exp[– (t – τb) / T3] T3 / (T3 – T4) + exp[– (t – τb) / T4] T4 / (T3 – T4)) – варьирование частоты восходящего чирп-сигнала (ВОПП); x(t)mb/ei = xmbi + t /T, τb ≤ t ≥ τe – изменение амплитуды переменной компоненты ВОПП; x(t)0b/ei = x0bi [1(t – τb)] + (x0ei – x0bi) ([1(t – τe)] – exp[– (t – – τb) / T3] T3 / (T3 – T4) + exp[– (t – τb) / T4] T4 / (T3 – T4)) – изменение апериодической составляющей обратного переходного процесса; φ0 – начальная фаза чирп-сигнала; t – текущее время; τb и τe – моменты начала и окончания переходного процесса соответственно. Таким образом, полный график переходных процессов при двух циклах отклонения ТТ БТС влево/вправо от НОТ, включающий нисходящий прямой (НППП)/восходящий обратный (ВОПП) переходные процессы, а также восходящий прямой (ВППП) и нисходящий обратный (НОПП), имеет следующий вид (рис. 2). Рис. 2. Циклы управления процессом формирования возможных девиационных траекторий при поочередном объезде двух последовательно расположенных на пути следования БТС препятствий при перемещении БТС по начальному и конечному участкам ЛДТ (НППП – ВОПП) и ПДТ (ВППП – НОПП) Ось ординат – ось сигнала x(t), инициирующего формирование ДТ БТС. На рис. 3 отдельно представлены выделенные из графиков рис. 2 осциллограммы ВОПП и НОПП (т. е. восстанавливающих НОТ), соответствующие конечным участкам левой и правой ДТ. Рис. 3. Траекторные сигналы модального управления процессами формирования левой (ВОПП) и правой (НОПП) девиационных траекторий БТС На рис. 2 схематично отображены четыре возможных варианта поочередного объезда двух последовательно расположенных препятствий на пути движения рассматриваемого БТС по различным девиационным траекториям (по левой – ЛДТ или правой – ПДТ): варианты представлены в виде чередующихся переходных процессов, генерируемых системой управления: вариант НППП – ВОПП соответствует объезду препятствия по ЛДТ (нижняя часть осциллограмм), вариант ВППП – НОПП – объезду по ПДТ (верхняя часть осциллограмм). Таким образом, возможные варианты объезда препятствий таковы: слева – слева, слева – справа, справа – справа, справа – слева. При этом сценарии объезда препятствий обусловлены характером их расположения на пути следования БТС, а также их геометрическими размерами. Интервал tгэп представляет собой время, спустя которое спорадически может возникнуть новое внешнее возмущение, откликом на которое является новая формируемая ДТ. Иными словами, это время формирования системой управления сигнала ДТ, по окончании которого восстанавливается движение БТС по НОТ. На рис. 4, а и 5, а приведены два фрагмента структурной схемы модального управления нестационарным процессом формирования ДТ соответственно при ее правом и левом отклонениях от НОТ. а б Рис. 4. Структурная схема модального управления нестационарным процессом формирования правой девиационной траектории (а) и график апериодических компонент (б) переходного процесса для ПДТ в виде переходной характеристики (ПХ) второго порядка (ВППП) и обратного нисходящего (НОПП) в виде импульсной переходной характеристики (ИПХ) апериодики первого порядка: nоу – порядок объекта управления; nипх – порядок ИПХ; ncc – порядок постоянной компоненты траекторного сигнала а б Рис. 5. Структурная схема модального управления нестационарным процессом формирования левой девиационной траектории (а) и график апериодических компонент переходных процессов для ЛДТ в виде ИПХ апериодики первого порядка (НППП) и обратного восходящего (ВОПП) в виде ПХ апериодики второго порядка (б): nпх – порядок переходной характеристики; ni – порядок интегрального звена Кроме того, на рис. 4, б и 5, б представлены графики апериодических компонент переходных процессов обратного нисходящего (НОПП) и обратного восходящего (ВОПП) типов соответственно. При этом НОПП реализуется в виде ИПХ апериодики первого порядка, а ВОПП – в виде ПХ апериодики второго порядка – h(t). На рис. 6 приведены в совмещенной форме структурная схема (а), графики локализации полюсов (б) объекта управления и апериодических компонент (в) траекторного сигнала при левой ДТ, а также время-частотная вейвлет-карта [2, 6, 7] сигнала, формирующего конечный участок ЛДТ и соответствующего процессу ВОПП, где ω – варьируемая угловая частота чирп-сигнала дозирования; tb и te – моменты начала и окончания принудительно-модального нестационарного процесса формирования ЛДТ БТС. а б в г Рис. 6. Схемы, поясняющие структурно-параметрическую нестационарность объекта управления при модальном формировании левой девиационной ТТ БТС: а – фрагмент алгоритма модального управления процессом формирования ТТ в виде структурной схемы; б – схема принудительного варианта локализации фиксируемых полюсов sp4, sp5, sp6, определяющих инерционность ПП, и непрерывно-варьируемой релокализации мнимых полюсов sp2, sp3, формирующих частотный характер ВОПП (его чирп-форму); в – изменение апериодической составляющей сигнала нестационарного ПП формирования ТТ; г – вейвлет-карта чирп-сигнала ВОПП На рис. 7 то же, но для НОПП, т. е. при формировании правой девиационной ТТ БТС. а б в г Рис. 7. Схемы, поясняющие структурно-параметрическую нестационарность объекта управления при модальном формировании правой девиационной траектории: а – фрагмент алгоритма модального управления процессом формирования ТТ в виде структурной схемы; б – схема принудительного варианта локализации полюса sp4, определяющего инерционность ПП фомирования текущей траектории, и непрерывно-варьируемой релокализации мнимых полюсов sp2, sp3, формирующих чирп-характер НОПП; в – изменение апериодической составляющей нестационарного ПП формирования ТТ БТС; г – вейвлет-карта чирп-сигнала НОПП формирования ТТ БТС В качестве вейвлет-карт на рис. 6 и 7 представлены так называемые квадратичные время-час- тотные распределения класса Коэна [6, 7] в виде распределений Вигнера – Вилле [2, 8, 9]. Отметим, что ВОПП (т. е. принудительно-модальный) при левой девиации ТТ принят в автоматизированной системе модального управления таким же по форме, что и ВППП при правой девиации ТТ БТС, с целью формирования процессов, восстанавливающих номинальный режим перемещения БТС, в естественном виде – с точки зрения функционирования составных элементов электромеханической части системы управления (рулевого механизма, электропривода ходовой части и ходового колесного механизма). При этом двухэкспоненциальную кривую, характеризующую конфигурацию ТТ БТС, следует рассматривать, с одной стороны, как зависимость метрического отклонения d(t) БТС от НОТ, с другой стороны, – как функцию мгновенной частоты траекторного чирп-сигнала f(t). На основе этой информации, используя графоаналитический подход, достаточно просто определить тарировочные характеристики d(f) – «метрическое от-клонение девиационной траектории от номинальной осевой – мгновенная частота траекторного чирп-сигнала» текущих траекторий БТС двух типов: – «мгновенная падающая частота траекторного чирп-сигнала – девиация ТТ БТС влево относительно НОТ»; – «мгновенная возрастающая частота траекторного чирп-сигнала – девиация ТТ БТС вправо относительно НОТ». Заметим, что для первой характеристики с левой девиационной ТТ изменение частоты f и девиации d происходит асинхронно (т. е. при падающей частоте девиация возрастает), а для второй характеристики с правым отклонением ТТ от НОТ – синхронно. По тарировочным характеристикам, введенным в программно-аппаратный комплекс системы управления, последняя по получаемым вейвлет-картам текущих траекторий БТС определяет мгновенную величину геометрического отклонения ТТ от НОТ, что позволяет на метрическом уровне контролировать ТТ перемещения БТС по карьерным маршрутам. Заключение В представленном исследовании описаны процедуры формирования и обработки сигналов программно-аппаратным комплексом автоматизированной системы управления текущими траекториями перемещения карьерных беспилотных транспортных средств. Рассмотренные процедуры позволяют осуществлять online-мониторинг и эффективное управление динамикой оперативного и безопасного траекторного перемещения БТС по технологическим маршрутам карьера в условиях открытых горных работ.
Список литературы

1. Чичерин И. В., Федосенков Б. А., Сыркин И. С., Садовец В. Ю., Дубинкин Д. М. Концепция управления беспилотными транспортными средствами в условиях открытых горных работ // Изв. вузов. Горный журнал. 2020. № 8. С. 109-121.

2. Mallat S. A wavelet tour of signal processing. New York: Academic Press (2nd Ed.), Ecole Politechnique, Paris; Courant Institute, New York University, Library of Congress Catalog Card Number: 99-65087, 1999; Re-printed 2001. 637 p.

3. Федосенков Б. А. Теория автоматического управления. Классические и современные разделы: учеб. пособие. Кемерово: Изд-во КемГУ, 2018. 322 с.

4. Гудвин Г. К., Гребе С. Ф., Сальгадо М. Э. Проектирование систем управления. М.: БИНОМ. Лабо-ратория знаний, 2004. 911 с.

5. Симикова А. А., Федосенков Б. А., Федосенков Д. Б. Модальное управление процессами дозирова-ния в среде пространства состояний и вейвлет-преобразований // Вестн. Астрахан. гос. техн. ун-та. Сер.: Управление, вычислительная техника и информатика. 2019. № 4. С. 46-58.

6. Auger F., Chassande-Mottin E. Quadratic time-frequency analysis I: Cohen’s class, Time-frequency analysis: concepts and methods // ISTE. 2008. January. P. 131-163.

7. Fedosenkov D. B., Simikova A. A., Kulakov S. M., Fedosenkov B. A. Cohen’s class time-frequency distri-butions for measurement signals as a means of monitoring technological processes // Steel in Translation. 2019. V. 49. N. 4. P. 252-256.

8. Федосенков Б. А., Федосенков Д. Б. Автоматизированное управление технологическими процесса-ми в вейвлет-среде: моногр. Кемерово: Изд-во КузГТУ, 2021. 161 с.

9. Debnath L. Recent development in the Wigner-Ville distribution and time-frequency signal analysis // Proceedings of the Indian National Science Academy (PINSA), January 2002. 68A:1. P. 35-56. DOIhttps://doi.org/10.1007/978-0-8176-8418-1_5.


Войти или Создать
* Забыли пароль?