Применение машинного обучения и интеллектуального анализа данных в автоматизированной системе неразрушающего вихретокового контроля поверхностного слоя деталей подшипников
Аннотация и ключевые слова
Аннотация (русский):
Изменение свойств материала в процессе физико-механической обработки может существенно снизить рабочий ресурс производимого изделия, поэтому важно осуществлять контроль качества поверхностного слоя деталей. Для решения данной задачи на подшипниковых предприятиях применяются такие методики неразрушающего контроля, как травление, визуальный, капиллярный, магнитопорошковый, ультразвуковой, вибрационный, вихретоковый методы. Рассматриваются физические основы представленных методик, приводится их сравнительный анализ. Для автоматизации обработки результатов методов неразрушающего контроля поверхностного слоя деталей подшипников в рамках концепции «Индустрия 4.0» могут применяться машинное зрение и подходы цифровой обработки сигналов. С точки зрения производи-тельности и возможности интеграции в производственную систему наиболее перспективным является вих-ретоковый метод, результатом контроля поверхности данным способом является массив цифровых значений. Развитие современных методов анализа информации позволяет эффективно обрабатывать большое количество данных, а машинное обучение позволяет решать задачи классификации, регрессии и т. д. Приводится методологическое обеспечение разработки и применения автоматизированной системы вихретокового контроля с использованием методов машинного обучения и интеллектуального анализа данных. Рассматриваются работы ученых, посвященные обработке результатов вихретокового контроля различных объектов, в том числе деталей подшипников, отмечается, что ранее не было уделено внимание вопросу обоснованного выбора модели машинного обучения для распознавания дефектов поверхности деталей. Показана возможность применения метода медианной полировки для преобразования вихретокового сигнала. Разработка и внедрение системы распознавания дефектов подшипников на основе методологического обеспечения, представленного в данной работе, могут существенно повысить эффективность контроля качества изделий и оптимизировать технологический процесс.

Ключевые слова:
неразрушающий контроль, Индустрия 4.0, подшипники, дефект, вихретоковый сигнал, машинное обучение, анализ данных, распознавание, автоматизация, поверхностный слой
Текст
Текст (PDF): Читать Скачать

Введение

В настоящий момент на промышленных предприятиях активно внедряется и развивается концепция «Индустрия 4.0», которая включает в себя комплексную автоматизацию, цифровизацию, разработку интеллектуальных систем управления и контроля, что, в свою очередь, ведет к росту производительности, снижению вероятности ошибок и повышению качества изделий [1]. Критерий качества играет особую роль при производстве высокоточных деталей, которые используются во многих отраслях промышленности, к таким деталям относятся подшипники [2–4].

Подшипники применяются при конструировании станков, медицинского оборудования, автомобилей и другой техники. Выход из строя деталей подшипника в процессе работы может привести к различным негативным последствиям: от простоя оборудования до угрозы здоровью и жизни людей. В целях обеспечения высокого качества подшипников, а также совершенствования технологического процесса необходимо осуществлять контроль на каждом этапе производства деталей. Для эффективной реализации подобного мониторинга качества могут применяться различные инструменты в рамках «Индустрии 4.0», такие как внедрение единых информационных пространств и сервисов облачных вычислений, использование методов data science (науки о данных) и машинного обучения [1, 5–7].

Таким образом, разработка системы контроля качества деталей подшипников с применением современных технологий автоматизации, цифровизации и обработки данных является актуальной и перспективной задачей.

 

Неразрушающий контроль поверхностного слоя деталей подшипников

Качество деталей подшипников зависит от двух факторов: соответствия заданным геометрическим параметрам и состояния поверхности. Применение различных измерительных приборов, например координатно-измерительных машин, позволяет осуществлять контроль формы и размеров изделий; определение характеристик поверхностного слоя деталей является более сложной задачей, т. к. изменение структуры (дефект) поверхности протяженностью несколько десятых долей миллиметра может привести к существенному сокращению срока службы подшипника и неожиданному выходу из строя в процессе работы [2–4].

Для осуществления контроля качества поверхностного слоя деталей подшипников на производстве применяются различные методы, основанные на физико-химических и механических свойствах материала. Ниже приведена сравнительная таблица методик контроля, применяемых в подшипниковом производстве [2, 3, 8–10].

 

Сравнение методов неразрушающего контроля деталей подшипников

Comparison of methods of non-destructive testing of bearing parts

Метод

Физические основы метода

Форма результатов контроля

Производительность

Визуальный

Осмотр специалистом детали
и поиск крупных дефектов

До 10 изделий в 1 ч

Капиллярный

Взаимодействие химических растворов и разрывов
материала детали

Индикаторные следы

Травление

Химическое взаимодействие специального раствора
и дефекта (изменение
микроструктуры) детали

Магнитопорошковый

Формирование локальных
магнитных полюсов в местах дефектов вследствие
намагничивания детали

До 100 изделий в 1 ч

Ультразвуковой

Исследование разницы
взаимодействия ультразвука
с годной деталью и дефектной

Цифровые значения

Вибрационный

Рассмотрение детали как
механической системы,
возбуждение и исследование автоколебаний

Вихретоковый

Косвенным образом исследуются электромагнитные свойства
годной и дефектной области поверхности

До 1 000 изделий в 1 ч

 

 

С точки зрения автоматизации обработки результатов методы контроля можно разделить на 2 группы: первая группа включает методы, в которых для автоматического обнаружения дефектов необходимо использовать компьютерное зрение (капиллярный, травление, магнитопорошковый), а вторая группа – методы, позволяющие производить анализ с применением технологий цифровой обработки сигналов и данных (ультразвуковой, вибрационный, вихретоковый). В условиях реального производства применение компьютерного зрения может быть затруднено, т. к. технологическая среда часто характеризуется изменчивыми условиями: переменное освещение, пыль, вибрации и другие внешние воздействия могут создавать трудности при съемке и обработке изображений, также данный подход накладывает ограничения на контроль деталей различных видов и размеров. Таким образом, применение методов контроля с использованием измерительных приборов и технологий обработки цифровых сигналов может быть более эффективным в подшипниковом производстве, также следует отметить, что подобные методы позволяют обнаруживать неоднородности на уровне микроструктуры и подповерхностные дефекты [8–10].

Одним из наиболее производительных методов неразрушающего контроля изделий машиностроения является вихретоковый метод, это связано с тем, что для реализации данной методики деталь не должна быть специально подготовлена (намагничена, смочена раствором и т. п.). Кроме того, вихретоковый контроль позволяет не только обнаружить дефект поверхности, но и классифицировать его тип, что является важным фактором в контексте непрерывного совершенствования технологического процесса [3, 5, 8].

В настоящее время активно разрабатываются приборы для контроля поверхности деталей подшипников вихретоковым методом, одним из таких приборов является ПВК-К2М (внесен в Государственный реестр средств измерений, № 26079-03). Данное аппаратное обеспечение соответствует требованиям концепции Индустрии 4.0, т. к. основным вычислительным элементом ПВК-К2М является персональный компьютер, что обеспечивает гибкость использования программного обеспечения различной сложности, также в данный прибор встроен трехкоординатный манипулятор, это позволяет использовать ПВК-К2М для контроля качества поверхности деталей с различными геометрическими особенностями и размерами, таким образом обеспечивается принцип универсальности системы [5].

Результатом вихретокового контроля является большой массив цифровых значений, размером около 30 000 наблюдений, каждая величина в данном массиве характеризует состояние поверхности объекта контроля в определенной точке сканирования. На рис. 1 показана визуализация (цветовая сетка) данных, полученных прибором ПВК-К2М при сканировании поверхности подшипников с дефектом класса «трещина».

 

 

 

Рис. 1. Сканограмма вихретокового контроля поверхности с трещиной

 

Fig. 1. Scan of eddy current monitoring of a cracked surface

 

 

Классическим способом анализа данных при вихретоковом контроле считается рассмотрение оператором вида выходного сигнала, однако данный метод обладает небольшой производительностью и высокой зависимостью от «человеческого фактора», поэтому возникла потребность в разработке автоматизированной системы распознавания дефектов поверхностного слоя деталей подшипников по цифровому сигналу вихретокового датчика.

 

Методологическое обеспечение автоматизации распознавания дефектов поверхностного слоя деталей подшипников с применением машинного обучения

С развитием вычислительной техники и методов анализа данных появилась возможность автоматизировать обработку результатов вихретокового контроля для обнаружения дефектов поверхностного слоя деталей, наиболее перспективным направлением в области распознавания образов является применение технологий искусственного интеллекта, а именно машинного обучения. 

Машинное обучение – это кластер методов искусственного интеллекта, способных решать задачи на основе опыта предыдущих решений [6, 11, 12].

На рис. 2 представлена концепция применения машинного обучения в распознавании дефектов поверхностного слоя подшипников. Процесс разработки и применения системы распознавания деталей подшипников с использованием машинного обучения можно разделить на 3 основных этапа: исследования, обучающий эксперимент и непосредствен-
но контроль качества изделий на производстве (см. рис. 2). Изучением возможности определения различных типов дефектов по сигналу вихретокового преобразователя занимались как российские, так и зарубежные ученые. Идентификации дефектного состояния машиностроительных изделий посвящены научные работы Н. П. Алешина, С. В. Скрынникова [13], А. В. Семенова, Д. А. Слесарева [14], М. А. Ганзена [15] и др. В представленных исследованиях основными методами обработки результатов контроля являются математическое моделирование, дисперсионный анализ и искусственные нейронные сети. Иностранные ученые разрабатываю
т алгоритмы определения дефектов поверхностей деталей на основе таких методик, как вейвлет-преобразование и нейросетевые модели [16, 17].

 

 

Рис. 2. Этапы создания и применения автоматизированной системы вихретокового контроля деталей подшипников
на основе методов машинного обучения

 

Fig. 2. Stages of creation and application of an automated eddy current control system for bearing parts
based on machine learning methods

 

 

Значимый вклад в развитие методологического и алгоритмического обеспечения системы распознавания дефектов деталей подшипников по сигналу вихретокового датчика внесли А. А. Игнатьев, С. А. Игнатьев, Е. М. Самойлова, О. В. Волынская, О. С. Шумарова, К. Л. Вахидова и др. [3, 5, 7, 8, 18–20]. В своих работах данные исследователи использовали такие инструменты обработки и анализа вихретокового сигнала, как Фурье-преобразование, теория вейвлетов, фрактальный анализ, расчет статистических показателей, искусственные нейронные сети.

Ранее в научных работах, посвященных обработке результатов вихретокового контроля, не освещались вопросы сравнительного анализа, обоснованного выбора и использования различных подходов машинного обучения (помимо искусственных нейронных сетей) для распознавания дефектов подшипников.

В ходе исследований вихретокового сигнала, полученного при сканировании деталей подшипников, было определено, что из-за скольжения датчика над поверхностью объекта контроля выходные данные могут быть зашумлены. На рис. 3 показан трехмерный график, построенный по сигналу вихретокового преобразователя при  контроле  детали  подшипника

с дефектом «шлифовальный прижог».

 

 

Рис. 3. Трехмерный график исходного сигнала вихретокового преобразователя

 

Fig. 3. Three-dimensional graph of the original eddy current converter signal

 

Данные обладают трендом (см. рис. 3), это противоречит физическому смыслу построения вихретокового образа и затрудняет процесс анализа контроля. Для решения этой проблемы можно использовать метод медианной полировки.

Медианная полировка – это статистический метод, суть которого заключается в последовательном вычитании из строк и столбцов матрицы ненулевых медиан [21].

На рис. 4 показан график данных, изображенных на рис. 3, но после применения к исходному сигналу вихретокового преобразователя метода медианной полировки.

 

 

Рис. 4. Трехмерный график сигнала вихретокового преобразователя после обработки методом «медианной полировки»

 

Fig. 4. Three-dimensional graph of the eddy current converter signal after processing by the “median polishing” method

 

По данным, полученным после обработки, можно точнее выделить области неоднородной структуры поверхностного слоя и идентифицировать вид дефекта.

Следующим этапом после преобразования исходного сигнала вихретокового контроля является классификация областей полученного образа на 2 класса: «приемлемое качество поверхности» и «возможен дефект», это может быть выполнено по критерию среднеквадратического отклонения или другого признака однородности сигнала.

Если область вихретокового образа была отнесена к классу «возможен дефект», то далее необходимо определить тип дефекта, для этого можно использовать модели машинного обучения, позволяющие производить мультиклассовую классификацию, в работе [12] был приведен сравнительный анализ таких методов, были рассмотрены древовидные модели, искусственные нейронные сети, опорные вектора, показана возможность применения данных методик в задаче распознавания дефектов по сигналу вихретокового преобразователя. Древовидные модели (деревья решений, случайный лес) являются более интерпретируемыми методами, что особенно важно в условиях реального производства, однако нейронные сети в ряде случаев могут давать более точные результаты. В качестве источника экспертной информации для данной задачи могут быть использованы документы-классификаторы, которые обычно применяются операторами для сравнения получаемого сигнала с эталонным видом для каждого дефекта. Так, на предприятии ОАО «ЕПК-Саратов» был разработан классификатор неоднородности и дефектов деталей подшипников К3-2005 [3, 8], данный документ может быть применен для разметки вихретокового сигнала в процессе разработки автоматической системы распознавания дефектов.

Заключительным этапом автоматизации вихретокового контроля на основе методов машинного обучения является процесс объединения обученных моделей, разработанных алгоритмов, методов в единую систему.

Применение методологии, описанной в данной работе, может быть использовано для повышения эффективности и производительности системы неразрушающего контроля изделий подшипниковой промышленности. 

 

Заключение

Современное развитие цифровой техники и методов обработки данных позволяет автоматизировать большинство процессов промышленного предприятия, в том числе контроль качества выпускаемой продукции, что особенно важно при производстве высокоточных деталей – подшипников. Применение автоматизированной системы определения качества поверхностного слоя позволяет повысить эффективность распознавания дефектов деталей за счет снижения влияния человеческого фактора.

Для неразрушающего контроля качества поверхностного слоя деталей подшипников могут быть применены различные методы: капиллярный, травление, магнитопорошковый, ультразвуковой, вибрационный, вихретоковый. С точки зрения производительности и автоматизации наиболее перспективным является метод вихретокового контроля.

Представление результатов вихретокового контроля в виде массива цифровых значений позволяет использовать современные методы анализа данных, искусственного интеллекта и машинного обучения для распознавания дефектов деталей подшипников.

Применение системы контроля качества поверхностного слоя деталей подшипников на основе методов машинного обучения может увеличить эффективность технологического процесса, свести к минимуму количество брака, снизить время простоя оборудования и существенно повысить производительность промышленного предприятия в целом.

Список литературы

1. Тарасов И. В. Индустрия 4.0: понятие, концепции, тенденции развития // Стратегии бизнеса. 2018. № 6 (50). С. 57–63.

2. Рудюк М. Ю., Леонтьев А. А., Гурьева А. А. Методы контроля и технологические методы обеспечения качества подшипников качения // Актуальные вопросы современных научных исследований: сб. ст. IX Между-нар. науч.-практ. конф. (Пенза, 05 февраля 2024 г.). Пенза: Наука и просвещение, 2024. С. 118–122.

3. Игнатьев А. А., Горбунов В. В., Игнатьев С. А. Мониторинг технологического процесса как элемент системы управления качеством продукции. Саратов: Изд-во СГТУ, 2009. 160 с.

4. Игнатьев А. А., Добряков В. А., Игнатьев С. А. Автоматизированный контроль в системе управления качеством изготовления деталей подшипников // Вестн. Сарат. гос. техн. ун-та. 2020. № 1 (84). С. 14–25.

5. Самойлова Е. М. Системный интегрированный подход к управлению качеством продукции на основе интеллектуализации мониторинга в едином информационном пространстве // Вестн. Перм. национ. исследоват. политехн. ун-та. Машиностроение, материаловедение. 2017. Т. 19. № 2. С. 179–195.

6. Хабаров В. И., Лукашин К. В. Развитие Искус-ственного интеллекта в период Четвертой промышленной революции // Развитие науки и практики в глобально меняющемся мире в условиях рисков: сб. материалов XVI Междунар. науч.-практ. конф. (Москва, 15 февраля 2023 г.). М.: АЛЕФ, 2023. С. 158–161.

7. Самойлова Е. М., Игнатьев А. А. Методы и алгоритмы интеллектуализации мониторинга технологических систем на основе автоматизированных станочных модулей интегрированного производства: моногр.: в 3 ч. Саратов: Изд-во СГТУ, 2019. Ч. 3. Гибридная интеллектуальная система. Информационная интеграция на уровне АСУТП. 84 с.

8. Игнатьев А. А., Шумарова О. С., Игнатьев С. А. Распознавание дефектов поверхностей качения колец подшипников при автоматизированном вихретоковом контроле с применением вейвлет-преобразований: моногр. Саратов: Изд-во СГТУ, 2017. 108 с.

9. Петров О. Н., Сокольников А. Н., Верещагин В. И., Агровиченко Д. В. Методы неразрушающего контроля. Красноярск: Изд-во Сибир. федер. ун-та, 2021. 132 с.

10. Захарченко М. Ю., Щеголев С. С., Мотков А. Г., Игнатьев А. А. Выявление дефектов колец подшипников с использованием энергоэффективного автоматизированного комплексного метода неразрушающего контроля // Высокие технологии в машиностроении: материалы Всерос. науч.-техн. интернет-конф. (Самара, 25–28 октября 2016 г.). Самара: Изд-во Самар. гос. техн. ун-та, 2016. С. 140–142.

11. Сирота А. А. Методы и алгоритмы анализа данных и их моделирование в MATLAB. СПб.: БХВ-Петербург, 2016. 384 с.

12. Игнатьев М. А. Обзор методов машинного обучения для применения в задаче идентификации вида дефекта по вихретоковому сигналу // Вестн. Сарат. гос. техн. ун-та. 2023. № 2 (97). С. 19–29.

13. Алешин Н. П., Скрынников С. В., Крысько Н. В., Щипаков Н. А., Кусый А. Г. Классификация поверхностных дефектов основного металла трубопроводов по результатам комплексной диагностики // Компьютерная оптика. 2023. Т. 47. № 1. С. 170–178.

14. Семенов А. В., Слесарев Д. А. Математическое моделирование вихретокового неразрушающего контроля стрендовых канатов // Контроль. Диагностика. 2021. Т. 24. № 12 (282). С. 4–11.

15. Ганзен М. А. Роботизированный вихретоковый контроль деталей ГТД с использованием нейронных сетей // Вестн. РГАТА им. П. А. Соловьева. 2019. № 2 (49). С. 65–70.

16. Grimberg R., Savin A., Steigmann R. Automated eddy current data analysis // International Journal of Materials and Product Technology. 2011. V. 41. N. 1/2/3/4. P. 75–88.

17. Xiang P. Automatic multi-frequency rotating-probe eddy-current data analysis: Dissertation for the degree of Doctor of Philosophy. USA: Iowa State University Press, 2005. 94 p.

18. Волынская О. В. Автоматизация вихретокового контроля неоднородности структуры поверхностного слоя деталей подшипников при мониторинге процесса шлифования: дис. … канд. техн. наук. Саратов: Изд-во СГТУИ, 2002. 172 с.

19. Вахидова К. Л., Игнатьев А. А., Игнатьев С. А. Определение фрактальной размерности сигналов вихретокового датчика для распознавания дефектов деталей подшипников // Автоматизация и управление в машино- и приборостроении: сб. науч. тр. Саратов: Изд-во СГТУ, 2020. С. 6–8.

20. Игнатьев А. А. Методы идентификации дефектов шлифованных деталей подшипников при автоматизированном вихретоковом контроле с применением интеллектуальных технологий // Вестн. Сарат. гос. техн. ун-та. 2022. № 1 (92). С. 19–35.

21. Hoaglin D., Mosteller F., Tukey J. Understanding Robust and Exploratory Data Analysis. USA: Wiley, 2000. 480 p.


Войти или Создать
* Забыли пароль?