ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ ВОДЫ С ПЕРВИЧНЫМИ ОБОЛОЧКАМИ ЯЙЦЕКЛЕТОК РЫБ КАК СИГНАЛА К ИХ ПЕРЕСТРОЙКЕ
Аннотация и ключевые слова
Аннотация (русский):
Цель работы – в контексте разработки методики криоконсервации исследовать взаимодействие воды с первичными оболочками яйцеклеток рыб как сигнала к их перестройке. Объектом для исследования служили репродуктивные клетки стерляди (Acipenser ruthenus Linnaeus, 1758), полученные в период нерестовой кампании. Вода – основной активатор функций репродуктивных клеток рыб – при контакте с первичными оболочками икры (двумя желточными и поверхностной студенистой) запускает механизм, изменяющий структуру и функциональную деятельность яйцеклеток, стимулирует подготовку яйцеклеток к оплодотворению, провоцируя перестройку органелл и изменения в оболочках. Последние при контакте с водой активируются и, вне зависимости от факта оплодотворения, приобретают различные свойства (клейкость, плавучесть, увеличение прочности), необходимые для дальнейшего развития эмбрионов в зависимости от условий инкубации. Изменения в свойствах оболочек обусловлены наличием определенных жирных кислот, дальнейшие химические превращения которых и являются основным фактором изменений согласно биологии размножения

Ключевые слова:
яйцеклетка, стерлядь, оболочка, жирные кислоты, вода, криоконсервация
Текст
Текст произведения (PDF): Читать Скачать

Введение В настоящее время становятся все более актуальными не только формирование живых ге-нофондных коллекций, но и сохранение генетического материала в виде глубокозамороженных спермиев, эмбрионов/предличинок в криобанках [1, 2]. Несмотря на то, что яйцеклетки или эмбрионы рыб, как было показано учеными, выжи-вают в течение короткого времени при охлаждении до нулевых температур, успешная глубокая их заморозка – очень редкое явление. Выделяют два основных препятствия для криоконсерва-ции яйцеклеток и эмбрионов рыб: во-первых, низкая проницаемость мембран, что затрудняет удаление воды из клетки, а также проникновение криозащитных агентов; во-вторых, большая желтковая масса ооцита и раннего эмбриона. Обе эти особенности приводят к образованию кри-сталлов льда в процессе замораживания [3]. Изучение строения клеток и их оболочек, видоспецифических различий очень важно для понимания реакции оболочек на водные растворы и моделирования возможных реакций при двойном температурном шоке при криоконсервации. При разработке методов криоконсервации яйцеклеток нельзя недооценивать роль внешней и внутриклеточной воды. Российские и зарубежные исследователи внесли свой вклад в описание внешнего строе-ния оболочки яйцеклеток осетровых с применением световой микроскопии [4–7]. Структура оболочки и микропиле были описаны у белуги Huso huso, русского осетра Acipenser gueldenstaedtii, сибирского осетра Acipenser baerii, севрюги Acipenser stellatus, стерляди Acipenser ruthenus [4–5, 8–11], белого осетра Acipenser transmontanus и адриатического осетра Acipenser naccarii [12, 13], а также веслоноса Polyodon spathula [14]. Перед нерестом яйцеклетки, формирующиеся в яичниках осетровых рыб, растут и созрева-ют. Каждая яйцеклетка окружена слоем фолликулярных клеток, непосредственно питающих яйцо. В течение периода созревания яйцеклетки накапливают большое количество желтка, который будет питать эмбрион во время развития до тех пор, пока личинки не перейдут на экзогенное питание. В течение продолжительного периода роста яйцеклетки ядро располагается в центре. Когда яйцеклетка приближается к своему финальному процессу созревания, ядро мигрирует от центра к анимальному полюсу, чтобы помочь генетическому материалу яйцеклетки легко смешаться с материалом спермы во время оплодотворения. Как только ооциты созревают, они отрываются от окружающего их фолликулярного слоя. Освободившиеся (овулировавшие) яйцеклетки стекают по трубкам и высвобождаются за пределы полости тела самки (нерест) и оплодотворяются. Овулированный ооцит покрыт оболочкой (хорионом), которая при воздействии воды набухает и затвердевает, защищая зародыш внутри. Кроме того, из хориона выделяется вещество, похожее на желе, которое позволяет ооцитам прилипать к субстрату на дне реки [15]. Целью работы было исследование взаимодействия воды с первичными оболочками яйце-клеток рыб как сигнала к их перестройке, что является важным для разработки методики криоконсервации. Материалы и методы Для изучения строения нативных оболочек яйцеклеток рыб использовали икру стерляди (Acipenser ruthenus Linnaeus, 1758). Нативные яйцеклетки обезвоживали в спиртах возрастаю-щей крепости, для чего последовательно использовали 50, 60, 70, 90, 96 и 100 оС спирт. После обезвоживания материал переносили в парафин. Для этого объекты помещали в термостат сна-чала в кашицу (смесь равных частей хлороформа и парафина) при температуре 37 оС, а затем в две-три порции чистого парафина, расплавленного при температуре 56 оС. Пропитанные па-рафином кусочки наклеивали на деревянные блоки. Для приготовления срезов использовали микротом. Полученные парафиновые срезы наклеивали на предметное стекло, смазанное смесью белка с глицерином (1 : 1) и подсушивали в термостате при 37 оС. Для того чтобы удалить пара-фин, перед окрашиванием срезы последовательно провели через три порции О-ксилола, спирты нисходящей крепости (от 100 до 70 оС) и поместили в дистиллированную воду. Готовые препа-раты смотрели на микроскопе Olympus BX53 с использованием камеры для микроскопа Olympus XC50 (рис. 1). а б Рис. 1. Микроскоп Olympus BX53 с камерой Olympus XC50 (а) и препараты срезов икры (б) Результаты и их обсуждение При изучении оболочек нативных яйцеклеток осетровых рыб на примере стерляди обна-ружено, что под фолликулярным эпителием ооцит покрыт яйцевыми оболочками – двумя жел-точными и поверхностной студенистой (рис. 2). Рис. 2. Оболочка ооцита стерляди (Acipenser ruthenus Linnaeus, 1758): 1 – фолликулярный эпителий; 2 – студенистая оболочка (хорион); 3 – наружная желточная оболочка; 4 – внутренняя желточная оболочка; 5 – кортикальный слой; 6 – кортикальные гранулы Хорион (студенистая оболочка) имеется только у клейкой икры и располагается поверх лучистой оболочки, он состоит из белков и кислых и нейтральных мукополисахаридов. Кислые мукополисахариды, локализованные по внешнему краю либо в кончиках ворсинок, гидратиру-ясь в воде, становятся липкими, благодаря чему икра приклеивается к субстрату [12, 16, 17]. При работе с нативной икрой отчетливо видны обе желточные оболочки, вероятно, в силу различной степени их растяжения. Позже, после попадания яйцеклетки в воду и при дальней-шем оплодотворении, желточные оболочки плотно прилегают друг к другу, поэтому могут быть приняты за одну (рис. 3). Вода в первую очередь контактирует с плазмолеммой и мембранами первичных оболочек, от проницаемости которых зависит как количество проникшей внутрь воды, так и путь проис-хождения энергии на обеспечение необходимых реакций. Перестройки органелл и дальнейшее дробление, которые начинаются внутри клеток у разных видов рыб после активации водой, идентичны. Однако изменение первичной оболочки яйцеклеток у разных видов рыб различно: у некоторых появляется клейкость (белуга, карп), а другие набухают и увеличиваются в разме-рах в несколько раз (толстолобик). Разные экологические условия развития икры отразились на строении яйцеклеток и ха-рактерных особенностях, заключающихся в химическом составе органелл клеток, что, по-видимому, определяется наличием определенных жирных кислот, дальнейшие хими-ческие превращения которых и являются основным фактором изменений клеток согласно био-логии размножения (табл.). Рис. 3. Оболочка оплодотворенной яйцеклетки стерляди (Acipenser ruthenus Linnaeus, 1758): 1 – полость гаструлы; 2 – желточная оболочка; 3 – студенистая оболочка (хорион) Состав жирных кислот первичных оболочек рыб* Тип икры Состав первичных оболочек Икра в буграх (лососевые) Насыщенные кислоты 18,26 %, мононенасыщенные + полиненасыщенные 81,74 % Приклеивающаяся икра (сазан) Насыщенные 36,18 %, мононенасыщенные 35,02 %, полиненасыщенные 28,8 % кислоты Плавающая икра (толстолобик) Моноеновые кислоты 36,8 %, насыщенные кислоты 42 %, полиненасыщенные 21,2 % *Составлено по [18]. Так, для икры, развивающейся в буграх (лососевые), характерно наличие пальмитиновой и олеиновой кислот, которые при взаимодействии с водой переходят в стеариновую кислоту, не растворимую в воде и способствующую повышению прочности первичных оболочек. Моно-еновые кислоты вызывают внутренние перестройки в клетке, а именно концентрацию жировых вакуолей в районе микропиле. Вследствие такой перестройки яйцеклетка обретает плавучесть и пространственную ориентацию (микропиле вверх). Таким образом, вода при контакте с обо-лочками клеток запускает механизм, который изменяет структуру и функциональную их дея-тельность в зависимости от дальнейшего развития эмбриона. Заключение По результатам проведенного исследования можно сделать вывод, что вода – основной активатор функций репродуктивных клеток рыб. При контакте с первичными оболочками икры она запускает механизм, изменяющий структуру и функциональную направленность яйцекле-ток. При разработке протоколов криоконсервации очень важно учитывать реакцию оболочек клеток на воду, т. к. от этого фактора также зависит успех процедуры. Вода стимулирует подго-товку яйцеклеток к оплодотворению, провоцируя перестройку органелл внутри них и в оболоч-ках для дальнейшего обеспечения оптимальных условий развития эмбриона. Оболочки при кон-такте с водой активируются и, вне зависимости от факта оплодотворения, приобретают различ-ные свойства (клейкость, плавучесть, увеличение прочности), необходимые для дальнейшего развития эмбрионов в зависимости от условий инкубации. Изменения в свойствах оболочек обусловлены наличием определенных жирных кислот.

Список литературы

1. Пономарева Е. Н., Красильникова А. А., Тихомиров А. М., Фирсова А. В. Новые биотехнологические методы криоконсервации репродуктивных клеток осетровых видов рыб // Юг России: экология, развитие. 2016. Т. 11. № 1. С. 59-68.

2. Пономарева Е. Н., Красильникова А. А., Фирсова А. В., Белая М. М. Криоконсервация репродуктивных клеток рыб: история и перспективы // Рыбное хозяйство. 2017. № 4. С. 85-88.

3. Rawson D. M., Zhang T. New approaches to the cryopreservation of fish oocytes and embryos // The role of biotechnology. Villa Gualino, Turin, Italy. 2005. P. 209-210.

4. Детлаф Т. А., Гинзбург А. С., Шмальгаузен О. И. Развитие осетровых рыб. Созревание яиц, оплодотворение, развитие зародышей и предличинок. М.: Наука, 1981. 224 с.

5. Марков К. П. Изучение микроструктуры оболочки яиц русского осетра Acipenser guldenstadti В. с помощью электронного сканирующего микроскопа // Вопросы ихтиологии. 1975. Т. 15. Вып. 5. С. 822-832.

6. Doroshov S. I., Moberg G. P., Van Eenennaam J. P. Observations on the reproductive cycle of cultured white sturgeon, Acipenser transmontanus // Environmental Biology of Fishes. 1997. V. 48. P. 265-278.

7. Siddique M. A. M., Cosson J., Psenicka M., Linhart O. A review of the structure of sturgeon egg membranes and of the associated terminology // Journal of Applied Ichthyology. 2014. V. 30 (6). P. 1246-1255.

8. Le Menn F., Pelissero C. Histological and ultrastructural studies of the Siberian sturgeon Acipenser baerii // Acipenser. P. Williot (Ed.). Cemagref Publ., Springer, Netherlands, 1991. P. 113-127.

9. Debus L., Winkler M., Billard R. Structure of micropyle surface on oocytes and caviar grains in sturgeons // International Review of Hydrobiology. 2002. V. 87. P. 585-603.

10. Psenicka M., Rodina, M., Linhart O. Ultrastructural study on the fertilisation process in sturgeon (Acipenser), function of acrosome and prevention of polyspermy // Animal Reproduction Science. 2010. V. 117. P. 147-154.

11. Zelazowska M. Formation and structure of egg envelopes in Russian sturgeon Acipenser gueldenstaedtii (Acipenseriformes: Acipenseridae) // Journal of Fish Biology. 2010. V. 76. P. 694-706.

12. Cherr G. N., Clark W. H. Fine structure of the envelope and micropyles in the eggs of the white sturgeon Acipenser transmontanus Richardson // Development, Growth and Differentiation. 1982. V. 24. P. 341-352.

13. Spinaci L., Lamia L. C., Cataudella S., Cotteli F. Preliminary contribution to the study of structural modifications of egg envelope during embryogenesis in Acipenser naccarii // Journal of Applied Ichthyology. 1999. V. 15. P. 320-321.

14. Linhart O., Kudo S. Surface ultrastructure of paddlefish eggs before and after fertilization // Journal of Fish Biology. 1997. V. 51. P. 573-582.

15. Frank A. Ch., Joel P., Eenennaam V. Technically Speaking, What Is Sturgeon Caviar? // University of Florida IFAS Extension. 2016. P. 1-5.

16. Макеева А. П., Микодина Е. В. Строение яйцевых оболочек карповых рыб и некоторые данные об их химической природе // Науч. докл. высш. шк. Биолог. науки. 1977. № 9 (165). С. 60-64.

17. Микодина Е. В. О структуре поверхности оболочек икринок костистых рыб // Вопр. ихтиологии. 1987. Т. 27. Вып. 1. С. 106-113.

18. Лебская Т. К., Менчинская А. А. Сравнительная характеристика пищевой ценности икры некоторых рыб // Вестн. науки и образования Северо-Запада России. 2015. Т. 1. № 2. С. 1-7.


Войти или Создать
* Забыли пароль?