Russian Federation
Russian Federation
The article deals with analytical models of Markov Queuing systems with service failures, incoming requests and requirements. The systems are analyzed in the conflict situations, for example, under significant loads, when the input flow intensity is high relative to the service intensity, which is important for extreme situations, both in technical applications, Internet applications, and social ones. There occurs a problem of optimization – minimization of the number of channels, provided the Queuing system has a guaranteed throughput. There is considered the approach to solving the optimization problem, when the relative system throughput is maximized while minimizing the number of service channels. Given the fact that the analytical formulas of Markov Queuing systems contain factorials, the analytical analysis of systems encounters the computational limitations. In the conducted research, in order to resolve computational difficulties it was decided to apply the approximation of the probabilities of the system states using the Laplace probability integral. Its use is justified precisely at high system load rates and a large number of service channels. There are described the features of applying the Laplace integral in conjunction with the numerical optimization for a conditional extremum. There is given the method of determining the number of service channels, when the probability of denial of service is minimized, respectively, maximizing the relative throughput of the system. There is given a graphical interpretation of the proposed method for optimizing Queuing systems with failures at the significant load. It is shown that during the search for the optimum there is a transition process in which there take place the significant changes in the system parameters: the intensity of the input flow and the intensity of service.
queuing system, failure probability, relative throughput, optimization, service channels
1. Sushil Ghimire, Gyan Bahadur Thapa, Ram Prasad Ghimire, Silvestrov S. A Survey on Queueing Systems with Mathematical Models and Applications. American Journal of Operational Research, 2017, vol. 7, no. 1, pp. 1-14.
2. Budylina E. A., Gar'kina I. A., Sukhov Ia. I. Sistemy massovogo obsluzhivaniia: markovskie protsessy s diskretnymi sostoianiiami [Queuing systems: Markov processes with discrete states]. Molodoi uchenyi, 2014, no. 6, pp. 145-148.
3. Tonui B., Lang'at R., Gichengo J. On Markovian Queuing Models. International Journal of Science and Research (IJSR), 2014, vol. 3, pp. 93-96.
4. Nazarov A. A., Izmailova Ia. E. Issledovanie RQ-sistemy M|E2|1 s vytesneniem zaiavok i sokhraneniem fazovoi realizatsii obsluzhivaniia [Study of RQ-system M | E2 | 1 with crowding out applications and maintaining phase realization of services]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naia tekhnika i informatika, 2018, no. 42, pp. 72-78.
5. Peschanskii A. I. Polumarkovskaia model' odnolineinoi sistemy obsluzhivaniia s poteriami i nenadezhnym vosstanavlivaemym kanalom [Semi-Markov model of single-line service system with losses and unreliable reconstructed channel]. Dinamicheskie sistemy, 2017, vol. 7 (35), no. 1, pp. 53-61.
6. Ryzhikov Iu. I., Ulanov A. V. Primenenie gipereksponentsial'noi approksimatsii v zadachakh rascheta nemarkovskikh sistem massovogo obsluzhivaniia [Using hyperexponential approximation in problems of calculating non-Markov queuing systems]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naia tekhnika i informatika, 2016, no. 3 (36), pp. 60-65.
7. Nazarov A. A., Semenova I. A. Asimptoticheskii analiz sistem massovogo obsluzhivaniia s neogranichennym chislom priborov i polumarkovskim vkhodiashchim potokom [Asymptotic analysis of queuing systems with unlimited number of devices and semi-Markov input]. Izvestiia Tomskogo politekhnicheskogo universiteta. Seriia: Upravlenie, vychislitel'naia tekhnika i informatika, 2012, vol. 320, no. 5, pp. 12-17.
8. Antonova V. M., Grechishkina N. A., Kuznetsov N. A., Sukhorukova N. A. Modelirovanie trafika sistem massovogo obsluzhivaniia v srede ANYLOGIC na primere passazhiropotoka stantsii metro [Modeling traffic of queuing systems in ANYLOGIC environment: a study of passenger flow in metro station]. Zhurnal radioelektroniki, 2018, no. 3. Available at: http://jre.cplire.ru/jre/mar18/8/text.pdf (accessed: 12.02.2020)
9. Shchukina N. A., Goremykina G. I., Tarasova I. A. Diskretno-sobytiinoe modelirovanie deiatel'nosti otdeleniia banka v srede MATLAB + SIMULINK [Discrete event modeling of branch bank activity in MATLAB + SIMULINK environment]. Fundamental'nye issledovaniia, 2016, no. 10, pp. 452-456.
10. Afonin V. V., Davydkin V. V. Optimizatsiia sistemy massovogo obsluzhivaniia s ogranichennoi dlinoi ocheredi [Queuing system optimization with limited queue length]. XLVI Ogarevskie chteniia: materialy nauchnoi konferentsii (Saransk, 06-13 dekabria 2017 g.): v 3-kh ch. Saransk, Izd-vo Natsional'nogo issledovatel'skogo Mordovskogo gosudarstvennogo universiteta im. N. P. Ogareva, 2018. Part 1. Pp. 227-232.
11. Afonin V. V., Nikulin V. V. Optimizatsiia Markovskikh sistem massovogo obsluzhivaniia s otkazami v sisteme MATLAB [Optimization of Markov queuing systems with denials in MATLAB system]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Upravlenie, vychislitel'naia tekhnika i informatika, 2018, no. 1, pp. 112-120.
12. Afonin V. V., Nikulin V. V. Optimizatsiia Markovskikh sistem massovogo obsluzhivaniia s ozhidaniem v sisteme MATLAB [Optimization of Markov queuing systems with waiting service in MATLAB]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Upravlenie, vychislitel'naia tekhnika i informatika, 2017, no. 2, pp. 39-47.
13. Zhernovyi Iu. V., Zhernovyi K. Iu. Metod potentsialov dlia zamknutoi sistemy s vremenem obslu-zhivaniia, zavisiashchim ot dliny ocheredi [Potential method for closed system with service time that depends on queue length]. Informatsionnye protsessy, 2015, vol. 15, no. 1, pp. 40-50.
14. Romanenko V. A. Vektornaia optimizatsiia sistemy massovogo obsluzhivaniia s chastichnoi vzai-mopomoshch'iu mezhdu kanalami [Vector optimization of queuing system with partial mutual assistance between channels]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2017, no. 6 (30), pp. 264-272.
15. Nazarov A. A., Fedorova E. A. Issledovanie RQ3 sistemy MMPP|GI|1 metodom asimptoticheskogo analiza vtorogo poriadka v uslovii bol'shoi zagruzki [Investigation of RQ3 system MMPP | GI | 1 by method of asymptotic analysis of second order under large load]. Izvestiia Tomskogo politekhnicheskogo universiteta. Informatsionnye tekhnologii, 2014, vol. 325, no. 5, pp. 6-15.
16. Boiarshinova I. N., Ismagilov T. R., Potapova I. A. Modelirovanie i optimizatsiia raboty sistemy massovogo obsluzhivaniia [Modeling and optimization of queuing system]. Fundamental'nye issledovaniia, 2015, no. 9 (1), pp. 9-13.
17. Baliasnikov V. V., Bogdanov A. A., Maslakov V. P., Staroselets V. G. Mnogokriterial'naia optimizatsiia transportnykh sistem massovogo obsluzhivaniia [Multicriteria optimization of queuing transport systems]. Transport Rossiiskoi Federatsii, 2012, no. 6 (43), pp. 73-76.
18. Miller B. M. Optimization of queuing system via stochastic control. Automatica, 2009, vol. 45, pp. 1423-1430.
19. Chekmenev V. A., Antropov M. S. Analiz sistemy massovogo obsluzhivaniia s dinamicheskimi po chislu trebovanii prioritetami pri bol'shoi zagruzke [Analysis of queuing system with dynamic requirements in terms of number of requirements at high load]. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta, 2003, no. 4, pp. 6-8.
20. Nazarov A. A., Chekmenev V. A. Analiz i optimizatsiia sistemy massovogo obsluzhivaniia s dinamicheskimi po chislu trebovanii prioritetami pri bol'shoi zagruzke [Analysis and optimization of queuing system with dynamic priorities in terms of number of requirements at high load]. Avtomatika i telemekhanika, 1984, no. 10, pp. 78-87.
21. Shelukhin O. I. Modelirovanie informatsionnykh sistem [Modeling information systems]. Moscow, Goriachaia liniia - Telekom Publ., 2016. 516 p.
22. Tarantsev A. A. Inzhenernye metody teorii massovogo obsluzhivaniia [Engineering methods of queuing theory]. Saint-Petersburg, Nauka Publ., 2007. 175 p.
23. Afonin V. V., Fedosin S. A. Modelirovanie sistem: uchebno-prakticheskoe posobie [Modeling systems: training manual]. Moscow, IntUIT: BINOM, Laboratoriia znanii Publ., 2016. 231 p.
24. Volkov I. K., Zuev S. M., Tsvetkova G. M. Sluchainye protsessy: uchebnik dlia vuzov [Random processes: textbook for high schools]. Pod redaktsiei V. S. Zarubina, A. P. Krishchenko. Moscow, Izd-vo MGTU im. N. E. Baumana, 2006. 448 p.
25. Gol'dshteit A. L. Optimizatsiia v srede MATLAB: uchebnoe posobie [Optimization in MATLAB environment: tutorial]. Perm', Izd-vo Perm. nats. issled. politekhn. un-ta, 2015. 192 p.