GRNTI 20.01 Общие вопросы информатики
GRNTI 26.03 Общественно-политическая мысль
GRNTI 43.01 Общие вопросы естественных и точных наук
GRNTI 44.01 Общие вопросы энергетики
GRNTI 45.01 Общие вопросы электротехники
GRNTI 50.01 Общие вопросы автоматики и вычислительной техники
GRNTI 62.01 Общие вопросы биотехнологии
GRNTI 69.01 Общие вопросы рыбного хозяйства
GRNTI 70.01 Общие вопросы водного хозяйства
GRNTI 73.34 Водный транспорт
The article presents the results of studying the fish distribution in the water column of the riverbed depression using remote echometric sounding with a software-hardware acoustic system with a vertical view. The study was conducted in the lower reaches of the Irtysh River. In the appointed period (July-October) under a decrease in the level regime and water temperature the increasing density of fish in the water area of the riverbed depression is explained by fish gathering in the period preceding wintering. The share of sturgeons varied from 5.46 to 10.28% of the total fish density, the indicators of which were in the range 1.70-5.05 thousand sp/ha in the daytime, 2.78-6.77 thousand sp/ha in the night. There has been stated the daily vertical migration of sturgeons, which is more uniform throughout the water column in the night, including the near-surface and near-bottom water horizons. In the dark near-surface water horizons are most intensively explored by large fish (25-30, 30-35, > 35 cm). The trigger of the daily vertical migration of sturgeons is supposed to be the light brightness, despite the poor eyesight of the fish under study, i.e. changing vertical position of sturgeons occurs due to endogenous circadian rhythms, as in many hydrobionts. The recorded features of sturgeon distribution because of preference of the direction and intensity of various factors can contribute to the optimization of bioenergy losses in hard turbulent conditions of riverbed depressions.
riverbed depression, sturgeon species, vertical distribution, fish density, diurnal aspect, size groups, water column, depth, fish behavior
1. Wang Y., Xia Z., Wang D. A transitional region concept for assessing the effects of reservoirs on river habitats: a case of Yangtze River, China. Ecohydrology, 2012, no. 5 (1), pp. 28-35. DOI:https://doi.org/10.1002/eco.186.
2. Pobedintseva M. A., Makunin A. I., Kichigin I. G., Kulemzina A. I., Serdyukova N. A., Romanenko S. A., Vorobieva N. V., Interesova E. A., Korentovich M. A., Zaytsev V. F., Mischenko A. V., Zadelenov V. A., Yurchenko A. A., Sherbakov D. Y., Graphodatsky A. S., Trifonov V. A. Population genetic structure and phylogeography of sterlet (Acipenser ruthenus, Acipenseridae) in the Ob and Yenisei river basins. Mitochondrial DNA Part A, 2018, no. 30 (1), pp. 156-164. DOI:https://doi.org/10.1080/24701394.2018.1467409.
3. Katopodis C., Cai L., Johnson D. Sturgeon survival: The role of swimming performance and fish passage research. Fisheries Research, 2019, no. 212, pp. 162-171. DOI: org/10.1016/j.fishres.2018.12.027.
4. Gorman A. M., Kraus R. T., Gutowsky L. F. G., Vandergoot C. S., Zhao Y., Knight C. T., Faust M. D., Hayden T. A., Krueger C. C. Vertical habitat use by adult walleyes conflicts with expectations from fish-ery-independent surveys. Transactions of the American Fisheries Society, 2019, no. 148 (3), pp. 592-604. DOI:https://doi.org/10.1002/tafs.10150.
5. DuFour M. R., Mayer C. M., Qian S. S., Vandergoot C. S., Kraus R. T., Kocovsky P. M., Warner D. M. Inferred fish behavior its implications for hydroacoustic surveys in nearshore habitats. Fisheries Research, 2018, no. 199, pp. 63-75. DOI:https://doi.org/10.1016/j.fishres.2017.11.018.
6. Iudanov K. I., Kalikhman I. L., Tesler V. D. Rukovodstvo po provedeniiu gidroakusticheskikh s"emok [Acoustic surveillance guide]. Moscow, Izd-vo VNIRO, 1984. 1124 p.
7. Spravochnaia informatsiia ob urovne rek dlia turistov-vodnikov, kaiakerov, rybakov [Reference information on river levels for tourists, kayakers and fishermen]. Available at: https://allrivers.info (accessed: 25.10.2018).
8. Borisenko E. S., Mochek A. D., Pavlov D. S., Degtev A. I. Hydroacoustic characteristics of mass fishes of the Ob-Irtysh basin. Journal of ichthyology, 2006, no. 46 (2), pp. 227-234. DOI:https://doi.org/10.1134/S0032945206110130.
9. Reshetnikov Iu. S. Atlas presnovodnykh ryb Rossii [Atlas of freshwater fish of Russia]. Moscow, Nauka Publ., 2003. Vol. 2. 253 p.
10. Wishingrad V., Chivers D. P. Ferrari M. C. Relative cost/benefit trade-off between cover-seeking and escape behaviour in an ancestral fish: The Importance of Structural Habitat Heterogeneity. Ethology, 2014, no. 120, pp. 973-981. DOI:https://doi.org/10.1111/eth.12269.
11. Wishingrad V., Ferrari M. C. O., Chivers D. P. Behavioural and morphological defences in a fish with a complex antipredator phenotype. Animal Behaviour, 2014, no. 95, pp. 137-143. DOI:https://doi.org/10.1016/j.anbehav.2014.07.006.
12. May L. E., Kieffer J. D. The effect of substratum type on aspects of swimming performance and behaviour in shortnose sturgeon Acipenser brevirostrum. Journal of Fish Biology, 2017, no. 90, pp. 185-200. DOI:https://doi.org/10.1111/jfb.13159.
13. Kieffer J. D., Arsenault L. M., Litvak M. K. Behavior and performance of juvenile shortnose sturgeon Acipenser brevirostrum at different water velocities. Journal of Fish Biology, 2009, no. 74, pp. 674-682. DOI:https://doi.org/10.1111/j.1095-8649.2008.02139.x.
14. Chemagin A. A. Sovremennoe ekologicheskoe sostoianie reki Irtysh v nizhnem techenii. Avtoreferat dis. ... kand. biol. nauk [Current environmental status of the Irtysh River in its lower reaches. Diss.Abstr…. Cand. Biol.Sci.]. Tiumen', 2015. 16 p.
15. Ruban G. I. Adaptive ecological and morphological features of the Siberian sturgeon (Acipenser baerii Brandt). Inland Water Biology, 2019, no. 12 (2), pp. 210-216. DOI:https://doi.org/10.1134/s1995082919020135.
16. Yuan X., Cai L., Johnson D., Tu Z., Huang Y. Oxygen consumption and swimming behavior of juvenile Siberian sturgeon Acipenser baerii during stepped velocity tests. Aquatic Biology, 2016, no. 24 (3), pp. 211-217. DOI:https://doi.org/10.3354/ab00649.
17. Cai L., Johnson D., Mandal P., Gan M., Yuan X., Tu Z., Huang Y. Effect of exhaustive exercise on the swimming capability and metabolism of juvenile Siberian sturgeon. Transactions of the American Fisheries Society, 2015, no. 144, pp. 532-538. DOI:https://doi.org/10.1080/00028487.2015.1007163.
18. Duan M., Qu Y., Zhuang P. Swimming characteristics of the siberian sturgeon. The Siberian sturgeon (Acipenser Baerii, Brandt, 1869). Cham, Springer, 2017. Vol. 1 - Biology. Pp. 229-246. DOI:https://doi.org/10.1007/978-3-319-61664-3_12.
19. Deslauriers D., Kieffer J. D. The influence of flume length and group size on swimming performance in shortnose sturgeon Acipenser brevirostrum. Journal of Fish Biology, 2011, no. 79, pp. 1146-1155. DOI:https://doi.org/10.1111/j.1095-8649.2011.03094.x.
20. He X., Lu S., Liao M., Zhu X., Zhang M., Li S., You X., Chen J. Effects of age and size on critical swimming speed of juvenile Chinese sturgeon Acipenser sinensis at seasonal temperatures. Journal of Fish Biology, 2013, no. 82, pp. 1047-1056. DOI:https://doi.org/10.1111/j.1095-8649.2012.12015.x.
21. Shivaramu S., Santo C. E., Kašpar V., Bierbach D., Gessner J., Rodina M., Gela D., Flajšhans M., Wuertz S. Critical swimming speed of sterlet (Acipenser ruthenus): Does intraspecific hybridization affect swimming performance? Journal of Applied Ichthyology, 2019, no. 35, pp. 217-225. DOI: org/10.1111/jai.13834.
22. Tritico H. M., Cotel A. J. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). Journal of Experimental Biology, 2010, no. 213, pp. 2284-2293. DOI:https://doi.org/10.1242/jeb.041806.
23. Silva A. T., Katopodis C., Santos J. M., Ferreira M. T., Pinheiro A. N. Cyprinid swimming behavior in response to turbulent flow. Ecological Engineering, 2012, no. 44, pp. 314-328. DOI:https://doi.org/10.1016/j.ecoleng.2012.04.015.
24. Chemagin A. A. The effect of vortex structures in the river bed on concentration and size differentiation of the fish population. Biosystems Diversity, 2018, no. 26 (2), pp. 139-144. DOI:https://doi.org/10.15421/011822.
25. Kough A. S., Jacobs G. R., Gorsky D., Willink P. W. Diel timing of lake sturgeon (Acipenser ful-vescens) activity revealed by satellite tags in the Laurentian Great Lake Basin. Journal of Great Lakes Research, 2018, no. 44 (1), pp. 157-165. DOI: org/10.1016/j.jglr.2017.10.008.
26. Parsley M. J., Popoff N. D., Wright C. D., Van der Leeuw B. K. Seasonal and Diel Movements of White Sturgeon in the Lower Columbia River. Transactions of the American Fisheries Society, 2008, no. 137 (4), pp. 1007-1017. DOI:https://doi.org/10.1577/t07-027.1.
27. Kapusta A., Morzuch, J., Duda A., Bogacka-Kapusta E., Kolman R. Dispersal and survival of stocked juvenile hatchery-reared Atlantic sturgeon (Acipenser oxyrinchus). Archives of Polish Fisheries, 2016, no. 24 (4), pp. 243-249. DOI:https://doi.org/10.1515/aopf-2016-0021.
28. Pavlov D. S., Mikheev V. N. Downstream migration and mechanisms of dispersal of young fish in rivers. Canadian Journal of Fisheries and Aquatic Sciences, 2017, no. 74 (8), pp. 1312-1323. DOI:https://doi.org/10.1139/cjfas-2016-0298.
29. Kubala M., Farský M., Pekárik L. Migration patterns of sterlet (Acipenser ruthenus, Linnaeus 1758) in the Middle Danube assessed by 1 year acoustic telemetry study. Journal of Applied Ichthyology, 2019, no. 35, pp. 54-60. DOI: org/10.1111/jai.13859.
30. Kalmykov V. A., Ruban G. I., Pavlov D. S. Migrations and resources of sterlet Acipenser ruthenus (Acipenseridae) from the lower reaches of the Volga River. Journal of Ichthyology, 2010, no. 50, pp. 44-51. DOI: org/10.1134/S0032945210010066.
31. Mehner T. Diel vertical migration of freshwater fishes - proximate triggers, ultimate causes and research perspectives. Freshwater Biology, 2012, no. 57 (7), pp. 1342-1359. DOI:https://doi.org/10.1111/j.1365-2427.2012.02811.x.
32. Nowicki C. J., Bunnell D. B., Armenio P. M., Warner D. M., Vanderploeg H. A., Cavaletto J. F., Mayer C. M., Adams J. V. Biotic and abiotic factors influencing zooplankton vertical distribution in Lake Huron. Journal of Great Lakes Research, 2017, no. 43 (6), pp. 1044-1054. DOI:https://doi.org/10.1016/j.jglr.2017.08.004.
33. Watkins J. M., Collingsworth P. D., Saavedra N. E., O’Malley B. P., Rudstam L. G. Fine-scale zoo-plankton diel vertical migration revealed by traditional net sampling and a Laser Optical Plankton Counter (LOPC) in Lake Ontario. Journal of Great Lakes Research, 2017, no. 43 (5), pp. 804-812. DOI:https://doi.org/10.1016/j.jglr.2017.03.006.
34. Häfker N. S., Meyer B., Last K. S., Pond D. W., Hüppe L., Teschke M. Circadian clock involvement in zooplankton diel vertical migration. Current Biology, 2017, no. 27 (14), pp. 2194-2201.e3. DOI:https://doi.org/10.1016/j.cub.2017.06.025.
35. Chemagin A. A. Raspredelenie ryb v zimoval'noi iame v usloviiakh ledovogo pokrytiia [Fish distribution in wintering pit under ice cover]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2018, vol. 20, no. 5-3, pp. 479-489.
36. Wang X., Zhang J., Zhao X., Chen Z., Ying Y., Li Z., Xu D., Liu Z., Zhou M. Vertical distribution and diel migration of mesopelagic fishes on the northern slope of the South China sea. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, no. 167, pp. 128-141. DOI:https://doi.org/10.1016/j.dsr2.2019.05.009.
37. Neilson J. D., Ian Perry R., Crawford L. M. Fish migration, vertical. Encyclopedia of Ocean Sciences. London, Elsevier, 2019. Pp. 217-223. DOI:https://doi.org/10.1016/b978-0-12-409548-9.10778-x.
38. Karaushev A. V. Rechnaia gidravlika [River hydraulics]. Leningrad, Gidrometeoizdat, 1969. 418 p.
39. Baryshnikov N. B. Ruslovye protsessy: uchebnik [Channel processes: textbook]. Saint-Petersburg, Izd-vo RGGMU, 2008. 439 p.
40. Hrycik A. R., Collingsworth P. D., Sesterhenn T. M., Goto D., Höök T. O. Movement rule selection through eco-genetic modeling: Application to diurnal vertical movement. Journal of Theoretical Biology, 2019, no. 478, pp. 128-138. DOI:https://doi.org/10.1016/j.jtbi.2019.06.019.