VAC 05.13.01 Системный анализ, управление и обработка информации (по отраслям)
VAC 05.13.06 Автоматизация и управление технологическими процессами и производствами (по отраслям)
VAC 05.13.10 Управление в социальных и экономических системах
VAC 05.13.18 Математическое моделирование, численные методы и комплексы программ
VAC 05.13.19 Методы и системы защиты информации, информационная безопасность
UDK 519.24
GRNTI 20.01 Общие вопросы информатики
GRNTI 28.01 Общие вопросы кибернетики
GRNTI 49.01 Общие вопросы связи
GRNTI 50.01 Общие вопросы автоматики и вычислительной техники
GRNTI 82.01 Общие вопросы организации и управления
It was suggested to use the system model working in real time for an iterative method of the parameter estimation. It gives the chance to select a suitable input signal, and also to carry out the setup of the object parameters. The object modeling for a case when the system isn't affected by the measurement noises, and also for a case when an object is under the gaussian noise was executed in the MatLab environment. The superposition of two meanders with different periods and single amplitude is used as an input signal. The model represents the three-layer structure in the MatLab environment. On the most upper layer there are units corresponding to the simulation of an input signal, directly the object, the unit of the noise simulation and the unit for the parameter estimation. The second and the third layers correspond to the simulation of the iterative method of the least squares. The diagrams of the input and the output signals in the absence of noise and in the presence of noise are shown. The results of parameter estimation of a static object are given. According to the results of modeling, the algorithm works well even in the presence of significant measurement noise. To verify the correctness of the work of an algorithm the auxiliary computations have been performed and the diagrams of the gain behavior amount which is used in the parameter estimation procedure have been constructed. The entry conditions which are necessary for the work of an iterative method of the least squares are specified. The understanding of this algorithm functioning principles is a basis for its subsequent use for the parameter estimation of the multi-channel dynamic objects.
the method of the least squares, identification, modeling, input signal, parameter estimation
1. Ostrem K. Vvedenie v stohasticheskuyu teoriyu upravleniya. M.: Mir, 1973. 320 s.
2. L'yung L. Identifikaciya sistem. Teoriya dlya pol'zovatelya. M.: Nauka, 1991. 432 s.
3. Eykhoff P. Osnovy identifikacii sistem upravleniya. Ocenivanie parametrov i sostoyaniya. M.: Mir, 1975. 683 s.
4. Medich Dzh. Statisticheski optimal'nye lineynye ocenki i upravlenie. M.: Energiya, 1973. 440 s.
5. Seydzh E. P., Melsa Dzh. Teoriya ocenivaniya i ee primenenie v svyazi i upravlenii. M.: Svyaz', 1976. 495 s.
6. Gupta H. K., Mehra R. K. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculation // IEEE Trans. Autom. Control. 1974. Vol. 19, no. 7. P. 774-785.
7. Aström K. J. Maximum Likelihood and Prediction Error Methods // Automatica. 1980. Vol. 16, no. 5. P. 551-574.
8. Mehra R. K. Optimal input signal for parameter estimation in dynamic system - survey and new results // IEEE Trans. Autom. Control. 1974. Vol. AC-19, no. 6. P. 753-768.
9. Mehra R. K. On the Identification of Variences and Adaptive Kalman Filtering // IEEE Trans. Autom. Control. 1970. Vol. AC-15, no. 2. P. 175-184.
10. Mehra R. K. Optimal Input for Linear System Identification // IEEE Trans. Autom. Control. 1974. Vol. 19, no. 3. P. 192-200.
11. Goodwin G. C., Payne R. L. Dynamic System Identification: Experiment Design and Data Analysis. New York: Academic Press, 1977. 291 p.
12. Antsaklis P. J., Michel A. N. Linear systems. New York: McGraw-Hill, 1997. 685 p.
13. Brown R. J., Sage A. P. Error Analysis of Modeling and Bias Errorsin Continuous Time State Estimation // Automatica. 1971. Vol. 7. P. 577-590.
14. Goodwin G. C. Optimal Input Signals for Nonlinear-system Identification // Proc. Inst. Elec. Engrs. 1971. Vol. 118, no. 7. P. 922-926.
15. Seydzh E. P., Uayt Ch. S., III. Optimal'noe upravlenie sistemami. M.: Radio i svyaz', 1982. 392 s.
16. Voevoda A. A., Troshina G. V. Ocenivanie parametrov modeley dinamiki i nablyudeniya dlya lineynyh stacionarnyh diskretnyh sistem s ispol'zovaniem informacionnoy matricy Fishera // Nauch. vestn. NGTU. 2006. № 3 (24). S. 199-200.
17. Troshina G. V. Aktivnaya identifikaciya lineynyh dinamicheskih diskretnyh stacionarnyh ob'ektov vo vremennoy oblasti: dis. … kand. tehn. nauk. Novosibirsk, 2007. 171 c.
18. Troshina G. V. Vychislitel'nye aspekty zadachi vosstanovleniya vektora sostoyaniya dlya modeli s netochno zadannymi parametrami // Sb. nauch. tr. NGTU. 2008. Vyp. 3 (53). S. 25-34.
19. Voevoda A. A., Troshina G. V. Active identification of linear stationary dynamic object on base of the Fisher information matrix: the steady state // Proc. of the XII Intern. Conf. "Actual problems of electronic instrument engineering (APEIE-2014)" (Novosibirsk, Russia, 2-4 October 2014). Novosibirsk, 2014. P. 745-749. doi:https://doi.org/10.1109/APEIE.2014.7040785.
20. Voevoda A. A., Troshina G. V. Active identification of the inverted pendulum control system // Proc. of the 18th Intern. Conf. on Soft Computing and Measurements (SCM'2015). Saint-Petersburg: LETI Publ., 2015. Vol. 1. P. 153-156.
21. Voevoda A. A., Troshina G. V., Patrin V. M., Simakina M. V The object unknown parameters estimation for the 'inverted pendulum-Cart' system in the steady state // Proc. of the 16th Intern. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM-2015), Altai, Erlagol, 29 June - 3 July 2015. IEEE, 2015. P. 186-188.
22. Voevoda A. A., Troshina G. V. O nekotoryh metodah fil'tracii v zadache identifikacii // Sb. nauch. tr. NGTU. 2014. Vyp. 2 (76). C. 16-25.
23. Voevoda A. A., Troshina G. V. Ob ocenke vektora sostoyaniya i vektora parametrov v zadache identifikacii // Sb. nauch. tr. NGTU. 2014. Vyp. 4 (78). C. 53-68. doi:https://doi.org/10.17212/2307-6879-2014-4-53-68.
24. Troshina G. V. Modelirovanie dinamicheskih ob'ektov v srede Simulink. Ch. 1 // Sb. nauch. tr. NGTU. 2015. Vyp. 3 (81). C. 55-68. doi:https://doi.org/10.17212/2307-6879-2015-3-55-68.
25. Troshina G. V. Modelirovanie dinamicheskih ob'ektov v srede Simulink. Ch. 2 // Sb. nauch. tr. NGTU. 2015. Vyp. 4 (82). C. 31-41. doi:https://doi.org/10.17212/2307-6879-2015-4-31-41.