GRNTI 45.01 Общие вопросы электротехники
GRNTI 55.42 Двигателестроение
GRNTI 55.45 Судостроение
GRNTI 73.34 Водный транспорт
GRNTI 44.31 Теплоэнергетика. Теплотехника
Oughening the requirements of the international Convention for the prevention of the sea from vessels of 1973, with amendments, demands to reduce the environmental pollution, which can be achieved by maintaining the operational coefficient of energy efficiency of the vessel constant during the voyage. The behavior of the main engine with the fixed pitch propeller in the ship power plant is determined by the operating conditions of the vessel. The dependence of thermal load of the main engine on the operating conditions leads to increased pollution of the environment by fuel combustion products and increased operative ratio of energy efficiency. The control of the thermal and mechanical intensity of the main engine when it is working on a non-nominal screw characteristic, under its “weighting” or “relief", ensures the preservation of the required energy efficiency indicators when operating conditions change. There have been analyzed the methods of implementing the system of additional water jet impact supplied through the slot nozzle of the blade on the propeller to control the thermal and mechanical intensity of the main engine, regardless of the influence of external operating conditions. The design factors dependent on the type of the helical-steering complex of the vessel and affecting the method of liquid supply to the slotted nozzle of the blade have been analyzed. The analysis of the design features of modern fixed pitch propellers, methods of making screw propellers has been given. The main criteria for the system have been determined in order to minimize the negative impact on the propeller system and to lower the useful effect of controlled response on heat load of the main engine. The proposed design of the system of liquid supply to the slotted nozzles of propeller blades is characterized by minimal impact on the propeller unit.
main engine, blade, slotted nozzle, jet impact propeller, piping system, pump station, fixed pitch propeller
1. Leonov V. E., Timoshenko V. V. Issledovanie vliyaniya parametrov morskogo perehoda na operacionnyy koefficient energeticheskoy effektivnosti sudna // Vestn. Gos. un-ta mor. i rech. flota im. adm. S. O. Makarova. 2018. T. 10. № 2. S. 390-401. DOI:https://doi.org/10.21821/2309-5180-2018-10-2-390-401.
2. Osovskiy D. I., Sharatov A. S. Upravlenie propul'sivnymi harakteristikami sudna za schet struynogo vozdeystviya zhidkosti na lopasti grebnogo vinta // Sovremennye tendencii i perspektivy razvitiya vodnogo transporta Rossii: materialy VIII Mezhvuz. nauch.-prakt. konf. (Sankt-Peterburg, maya 2017 g.). SPb.: Izd-vo GUMRF im. adm. S. O. Makarova, 2017. S. 212-216.
3. Sharatov A. S. Ocenka vozmozhnosti podderzhivaniya pri ekspluatacii dvigatelya optimal'nogo udel'nogo rashoda topliva putem struynoy podachi vody na lopasti vinta // Materialy Nac. ezhegod. nauch.-prakt. konf. professorsko-prepodavatel'skogo sostava FGBOU VO «GUMRF im. adm. S. O. Makarova» (Sankt-Peterburg, 10 sentyabrya-20 oktyabrya 2018 g.). SPb.: Izd-vo GUMRF im. adm. S. O. Makarova, 2018. T. 2. S. 279-287.
4. Osovskiy D. I., Sharatov A. S. Issledovanie gidrodinamicheskih harakteristik grebnogo vinta, oborudovannogo struynoy mehanizaciey v gidrodinamicheskoy trube // Rybnoe hoz-vo Ukrainy. 2007. № 6. C. 37-38.
5. Yakovleva O. V., Salazkin I. V., Egorova N. I., Fomichev D. I. Osobennosti formirovaniya upravlyayuschih sil na sudah s dnischevoy vozdushnoy kavernoy s ventiliruemymi vodometnymi dvizhitelyami // Tr. CNII im. akad. A. N. Krylova. 2015. № 88. S. 69-80.
6. Bezyukov O. K., Erofeev V. L., Pryahin A. S. Ispol'zovanie hladopotenciala szhizhennogo prirodnogo gaza dlya snizheniya vybrosov dioksida ugleroda teploenergeticheskimi ustanovkami, rabotayuschimi na szhizhennom prirodnom gaze // Vestn. Gos. un-ta mor. i rech. flota im. adm. S. O. Makarova. 2016. № 3 (37). S. 143-155.
7. Vishnevskiy L. I. Vyravnivanie potoka v meste raspolozheniya dvizhiteley putem podachi gaza v gidrodinamicheskiy sled za vystupayuschimi chastyami korpusa sudna // Tr. Krylov. gos. nauch. centra. 2017. № 1. S. 14-23.
8. Sharatov A. S. Struynoe vozdeystvie na dinamiku grebnogo vinta // Vіsnik dvigunobuduvannya. 2010. № 2. C. 82-85.
9. Bobylev V. S., Brosalina A. A., Kirillov A. I., Kuprina E. E. Sovremennoe sostoyanie problemy ochistki sudovyh ballastnyh vod ot biologicheskih zagryazneniy i puti ee resheniya // Mor. intellektual. tehnologii. 2014. № 4. S. 22-29.
10. Kui N. K., Kiyanenko E. A., Zaynullina L. R., Petuhov A. A., Grigor'ev E. I. Izmenenie ph vody v processe ozonirovaniya // Vestn. Kazan. tehnologich. un-ta. 2013. T. 16. № 10. S. 232-234.
11. Dafforn K. A., Lewis J. A., Johnston E. L. Antifouling strategies: History and regulation, ecological impacts and mitigation // Marine Pollution Bulletin. 2011. Vol. 62 (3). Pp. 453-465. DOIhttps://doi.org/10.1016/j.marpolbul.2011.01.012.
12. Wood J. Pumping up power down under // International Water Power and Dam Construction. 2011. Vol. 53 (11). Pp. 32-34.
13. Mizzi K., Demirel Y. K., Banks C., Turan O., Kaklis P., Atlar M. Design optimisation of Propeller Boss Cap Fins for enhanced propeller performance // Applied Ocean Research. 2017. Vol. 62. Pp. 210-222. DOIhttps://doi.org/10.1016/j.apor.2016.12.006.
14. Ashok P., Kumar P. J., Prema Kumar P. S. Effect of stacking sequence on the performance of composite marine propeller // Journal of Advanced Research in Dynamical and Control Systems. 2017. Vol. 9 (Special Iss. 14). Pp. 1823-1839.
15. Park S., Oh G. H., Rhee S. H., Koo B-Y., Lee H. Full scale wake prediction of an energy saving device by using computational fluid dynamics // Ocean Engineering. 2015. Vol. 101. Pp. 254-263. DOI:https://doi.org/10.1016/j.oceaneng.2015.04.005.
16. Pat. 46740 Ukraina, MPK B63H 1/00. Konstrukciya mehanizirovannogo grebnogo vinta / Osovskiy D. I., Sharatov A. S. № 200903725; zayavl. 16.04.2009; opubl. 11.01.2010, Byul. № 1. 4 c.
17. Erofeev V. L., Zhukov V. A., Mel'nik O. V. O vozmozhnostyah ispol'zovaniya vtorichnyh energeticheskih resursov v sudovyh DVS // Vestn. Gos. un-ta mor. i rech. flota im. adm. S. O. Makarova. 2017. № 3 (43). S. 570-580.
18. Kim J. H., Choi B. J., Chung S. H., Seo H. W. Development of energy-saving devices for a full slow-speed ship through improving propulsion performance // International Journal of Naval Architecture and Ocean Engineering. 2015. Vol. 7. Iss. 2. Pp. 390-398. DOIhttps://doi.org/10.1515/ijnaoe-2015-0027.
19. Sharatov A. S. Vzaimodeystvie glavnogo dvigatelya i aktivnogo grebnogo vinta // Sovremennye tendencii i zakonomernosti razvitiya transportno-logisticheskogo kompleksa Azovo-Chernomorskogo basseyna: materialy Mezhdunar. nauch.-prakt. konf. (Novorossiysk, 17-19 sentyabrya 2015 g.). Novorossiysk: Izd-vo GMU im. adm. F. F. Ushakova, 2015. S. 35-40.