Россия
с 01.01.2006 по настоящее время
Россия
с 01.01.2018 по настоящее время
ГРНТИ 20.01 Общие вопросы информатики
ГРНТИ 26.03 Общественно-политическая мысль
ГРНТИ 43.01 Общие вопросы естественных и точных наук
ГРНТИ 44.01 Общие вопросы энергетики
ГРНТИ 45.01 Общие вопросы электротехники
ГРНТИ 50.01 Общие вопросы автоматики и вычислительной техники
ГРНТИ 62.01 Общие вопросы биотехнологии
ГРНТИ 69.01 Общие вопросы рыбного хозяйства
ГРНТИ 70.01 Общие вопросы водного хозяйства
ГРНТИ 73.34 Водный транспорт
«Точка росы» товарного газа является одним из основных нормируемых показателей, поскольку содержание влаги в товарном газе оказывает значительное влияние на время безотказной работы средств автоматики и снижение коррозии газопроводов, технологического оборудования и компрессорных станций в процессе транспортирования газа. Адсорбционная осушка природного газа получила широкое распространение в российской газовой промышленности. Для данного метода осушки газа характерны достаточно высокие показатели в области экологической безопасности. Кроме того, преимуществами данного метода являются отсутствие жидкой фазы и коррозионно-активных флюидов в товарном газе, низкий удельный расход адсорбента, высокая степень автоматизации процесса. Представлен обзор существующих методов адсорбционной осушки природного газа, осуществляемой в целях его подготовки к транспортированию. Рассмотрены преимущества адсорбционной осушки перед другими существующими способами, а также описаны конструктивные недостатки различных видов адсорберов и предложены способы их устранения.
подготовка природного газа, осушка природного газа, адсорбционный способ осушки газа, силикагели, цеолиты
Введение
Топливно-энергетический комплекс играет важную роль в экономике России: он является одной из ключевых составляющих экономической безопасности страны, приносит около четверти валового внутреннего продукта, вносит существенный вклад в формирование и развитие внешнеторговых взаимоотношений РФ с другими странами (более 45 % производимых в стране энергоресурсов отправляется на экспорт), а также в развитие международных энергетических рынков; большая часть валютных поступлений нашей страны формируется за счет экспорта энергоресурсов.
Мировой рынок природного газа является одним из наиболее динамично развивающихся рынков энергоносителей. Расширение сферы применения газа в экономике связано с его экологичностью, технологичностью и эффективностью использования в промышленности и коммунальном хозяйстве. Согласно консенсус-прогнозу, дополнительная потребность Европы в импортном газе составит 77 млрд м3 к 2030 г. и 88 млрд м3 к 2040 г. [1].
Протяженность магистральных газопроводов и отводов в настоящее время составляет 170,7 тыс. км (в однониточном исчислении). В эксплуатации находятся 250 линейных компрессорных станций, на которых установлено 3 825 газоперекачивающих агрегатов общей мощностью 46,1 ГВт. Объемы ежегодной реконструкции и технического перевооружения компрессорных станций оцениваются в 1,5–2,0 ГВт/год установленной мощности газоперекачивающих агрегатов. Оператором газотранспортной системы является ПАО «Газпром» [2].
Особенности адсорбционной осушки природного газа
Параметр «точка росы», который определяет влагосодержание природного газа, является нормируемым показателем при подготовке газа к транспорту. Чем ниже температура, до которой охлаждается природный газ при переработке и транспортировании, тем более серьезные требования предъявляются к его точке росы [3]. Точка росы определяет условия безгидратного транспорта газа, а также оказывает значительное влияние на время безотказной работы средств автоматики и снижение коррозии газопроводов, технологического оборудования и компрессорных станций.
В процессе переработки газа, а также во время его транспортировки из-за снижения температуры происходит конденсация водяных паров и, как следствие, образование водного конденсата. Водный конденсат, взаимодействуя с компонентами природного газа, образует гидраты. Отложение гидратов в газопроводе приводит к уменьшению их сечения, нарушению режима работы технологических установок, что может стать причиной аварийной остановки [4].
Содержание влаги в газе – даже в небольших количествах – увеличивает коррозионную активность сырья, в особенности при содержании в сырье кислых компонентов. Кроме того, влага понижает калорийность горючих газов [4].
Технические требования к качеству и безопасности природного горючего газа определены в основном нормативном документе газовой отрасли, регламентирующем качество транспортируемых углеводородных газов, СТО Газпром 089-2010 «Газ горючий природный, поставляемый и транспортируемый по магистральным газопроводам. Технические условия» [5]. В целях соответствия установленным требованиям по температуре точки росы применяют следующие технологические решения.
Низкотемпературная сепарация. Данная технология предусматривает:
– начальную сепарацию поступающего газа и улавливание жидкостных пробок во входном сепараторе газа;
– охлаждение входящего потока газа потоком охлажденного газа в теплообменнике газ/газ;
– охлаждение газа с помощью дросселирования потока, в процессе которого могут использоваться дроссель (эффект Джоуля – Томсона), турбодетандер, трубка Ранка;
– дальнейшую сепарацию охлажденного газа в низкотемпературном сепараторе газа;
– подогрев подготовленного газа в теплообменнике перед направлением в магистральный трубопровод.
Низкотемпературная конденсация. Технология включает:
– начальную сепарацию газа и улавливание жидкостных пробок во входном сепараторе газа;
– охлаждение входящего потока газа в специальном теплообменнике с помощью внешнего источника охлаждения, например холодильной машины или аппарата воздушного охлаждения;
– дальнейшую сепарацию охлажденного газового потока в низкотемпературном сепараторе газа.
Абсорбционная подготовка газа. Технология предусматривает:
– начальную сепарацию газа и улавливание жидкостных пробок во входном сепараторе газа;
– поглощение влаги из газа посредством прохождения через жидкий абсорбент абсорбционной установки;
– улавливание абсорбента, находящегося в газе, в выходном газосепараторе.
Адсорбционная подготовка газа. Технология включает:
– начальную сепарацию газа и улавливание жидкостных пробок во входном сепараторе газа;
– извлечение влаги из газа путем прохождения через адсорбент в адсорбционной колонне;
– осаждение адсорбционной пыли в выходном сепараторе.
Адсорбционный процесс осушки газа является одним из самых распространенных процессов подготовки газов к транспортированию. Для него характерны достаточно высокие показатели в области защиты окружающей среды. Кроме того, преимуществами данного метода является отсутствие жидкой фазы и коррозионно-активных флюидов в товарном газе, низкий удельный расход адсорбента, высокая степень автоматизации процесса. В зависимости от способа взаимодействия извлекаемого компонента с твердым поглотителем различают химическую и физическую адсорбцию. В процессе химической адсорбции происходит обмен электронов между адсорбированными молекулами и твердым телом, в результате чего образуется химическое соединение. Наличие данного химического соединения характерно только для поверхности твердого тела. Главным недостатком процесса химической адсорбции является трудность регенерации твердых поглотителей и их утилизация после отработки [6].
В промышленности для осушки газа в основном используются методы физической адсорбции. Физическая адсорбция обусловлена силами межмолекулярного взаимодействия, ключевую роль в создании которого играют дисперсионные силы. В основном дисперсионные силы усиливаются ориентационными силами, т. е. силами, обусловленными постоянными дипольными моментами адсорбированных молекул. Данные закономерности легли в основу современных процессов очистки и глубокой осушки природного газа. Согласно теории адсорбции, разработанной Н. А. Шиловым, насыщение адсорбента происходит послойно. В момент прохождения газа через адсорбент сначала происходит полное насыщение фронтального участка слоя адсорбента, далее газ проходит через этот участок без изменения, а зона поглощения постепенно смещается по направлению движения газового потока. После того как весь слой адсорбента насыщен, происходит «проскок» всех компонентов через слой адсорбента. Условия для протекания процессов адсорбции могут быть и динамическими, и статическими. В газовой промышленности в основном применяется динамическая адсорбция, т. е. адсорбция, осуществляющаяся путем прохождения газового потока через неподвижный слой адсорбента [7].
В промышленных установках для осушки природного газа чаще всего применяются силикагель и цеолиты (молекулярные сита). Цеолиты интенсивно поглощают влагу, но с трудом отдают ее при регенерации. В промышленных адсорберах регенерацию осуществляют методом термической десорбции, т. е. проводят продувку слоя горячим газом. Остаточное содержание влаги в цеолите определяется температурой слоя в конце стадии и влажностью продувочного газа. Допустимая температура нагрева при термической десорбции 320–350 °С, со скоростью 60–70 °С/ч [6].
По химическому составу все адсорбенты можно разделить на углеродные и неуглеродные. К углеродным адсорбентам относятся некоторые виды твердого топлива, активированные угли, а также углеродные волокнистые материалы. Неуглеродные адсорбенты включают в себя активный оксид алюминия, силикагели, цеолиты, алюмогели и глинистые природные силикаты [8].
Особенность цеолита – сохранение адсорбционной способности при любой относительной влажности газа, кроме того, они имеют высокую активность в широком интервале температур [9].
Осушка газов при относительно высоких значениях исходной относительной влажности (в диапазоне от 20 до 100 %) осуществляется с использованием силикагелей, для которых характерны большие размеры сорбирующих пор и немалые значения их объемов. При небольших значениях влажности осушка газа происходит с использованием цеолитов со сравнительно небольшими объемами пор. Силикагели рационально использовать в промысловой подготовке газов, и они позволяют проводить процессы осушки до их конечной влажности, как правило, не очень глубокой (точка росы 0 °С), что объясняется относительно пологим видом изотермы адсорбции паров воды на силикагелях [10].
Отличительной особенностью конструкции применяемых адсорберов является то, что выше слоя адсорбента на специальной металлической сетке размещен слой керамических шаров. Данная сетка является препятствием для уноса частиц адсорбента с поверхности адсорбера с регенерационным газом, который на стадии регенерации адсорбента движется снизу вверх, а слой керамических шаров способствует фиксации сетки на слое адсорбента и выравниванию входящего через верхний штуцер потока газа.
Наличие в адсорбере слоя керамических шаров, расположенных над адсорбционным слоем, приводит к появлению дополнительных трудностей при применении направляющего устройства с плоским диском-экраном. В связи с тем, что в насыпном слое керамических шаров отсутствуют разграничивающие поверхности, плоская струя со стенки корпуса не растекается перед насыпным слоем, а продолжает свое движение внутрь слоя, от сечения к сечению, с выходом части газа из насыпного слоя в центральную зону с пониженным статическим давлением. Поскольку керамические шары не зафиксированы между собой и имеют небольшую массу, то проходящий поток газа вовлекает их в движение, вызывая колебания и перемещение с газовым потоком. Перемешивание между собой керамических шаров и зерен адсорбента приводит к их истиранию и образованию оседающих в адсорбенте мелких частиц, что в результате увеличивает гидравлическое сопротивление адсорбента.
Движение газового потока в адсорбере, в котором установлено распределительное устройство с применением диска-экрана, осуществляется радиально, в виде плоской струи, направленной в сторону вертикальной стенки корпуса аппарата.
У данного распределительного устройства существует значительный недостаток, который заключается в отсутствии возможности выровнять поток газа при его входе в слой адсорбента. Происходит это из-за вихревого движения газа, образованного смешением газа у стенки корпуса адсорбера, и газа, находящегося в центральной части аппарата. На освободившееся место из удаленных от плоской решетки сечений поступают другие порции газа. Таким образом, под решеткой возникают обратные токи, а профиль скорости газа под плоской решеткой будет иметь «перевернутую» форму по сравнению с начальным профилем потока. Неравномерное распределение потока газа в плоскости аппарата является причиной неравномерного поступления газа в слой адсорбента и, соответственно, неравномерного движения его вдоль слоя адсорбента.
В целях выравнивания газового потока, в случае центрального ввода потока в аппарат, в промышленности используют различные распределительные устройства, размещаемые на выходе потока газа из верхнего штуцера. Установлено [11], что на равномерное распределение газового потока существенное влияние оказывают также показатель сопротивления распределительного устройства и расстояние от рабочего слоя до выхода газового потока из распределительного устройства.
В качестве адсорбента на установках осушки и отбензинивания газа Астраханского газоперерабатывающего завода используются цеолиты марки NaA-Y диаметром 1,6 мм и 3,2 мм. Комбинированная схема распределения потока осушаемого газа в адсорбере приведена на рис.
Схема распределения газового потока
В основе конструкции лежит плоский диск-экран, установленный на расстоянии от нижнего обреза верхнего штуцера. Диск-экран прикреплен к штуцеру с помощью ребер, приваренных к расширительному патрубку штуцера. Слой керамических шаров диаметром 12–13 мм высотой около 100 мм располагается на расстоянии 1,6 м от расширительного патрубка штуцера. Керамические шары распределены равномерно на металлической сетке с размером ячеи 1 × 1 мм. Газ, из которого с помощью диэтаноламина удалены сернистые соединения, подается на установку осушки и отбензинивания газа. На данной установке происходит процесс промывки газа от капель диэтаноламина с дальнейшим предварительным охлаждением до температуры не более 28 °С и направлением газа на осушку в адсорбер. Адсорбентом в данных адсорберах являются цеолиты (молекулярные сита). Газ поступает через основной штуцер, и далее происходит его распределение с помощью диска-экрана, который расположен под входным штуцером. Анализ параметров работы адсорберов в условиях промышленной эксплуатации и лабораторные исследования модели адсорбера с распределительным устройством, содержащим плоский диск-экран и слой керамических шаров, подтвердили наличие неравномерного распределения газового потока в адсорбере [12]. Таким образом, по завершении цикла адсорбции неиспользованным остается 30 % цеолитов.
Формирование неравномерного распределения потока газа в адсорбере происходит из-за образования вихревого движения потока, что, в свою очередь, приводит к неэффективному использованию цеолита в результате невозможности достижения выравнивания газового потока в поперечном сечении адсорбера.
Заключение
Обеспечение равномерного распределения потока газа в поперечном сечении аппарата является весьма важной задачей для совершенствования процесса осушки природного газа, т. к. позволит производить равномерное распределение осушаемого газа на входе в адсорбционный слой, уменьшить истирание и образование мелких частиц, добиться минимального гидравлического сопротивления (перепада давления по слоям адсорбента) в период срока службы цеолита. Таким образом, целесообразно предусматривать в конструкции адсорберов распределительные устройства для включения в работу всего поперечного слоя загруженного цеолита в адсорбер с целью равномерного использования всего объема цеолитов.
1. Бурмистрова Е. В. Прагматизм и свобода от предрассудков // Нефтегазовая вертикаль: национальный отраслевой журнал. 2018. URL: http://www.ngv.ru/magazines/article/pragmatizm-i-svoboda-ot-predrassudkov (дата обращения: 24.12.2019).
2. Прогноз научно-технического развития отраслей ТЭК // Министерство энергетики Российской Федерации - 2018. URL: https://minenergo.gov.ru/node/6366 (дата обращения: 24.12.2019).
3. Афанасьев А. И., Афанасьев Ю. М., Бекиров Т. М. и др. Технология переработки природного газа и конденсата. М.: ООО «Недра-Бизнесцентр», 2002. 517 с.
4. Кельцев Н. В. Основы адсорбционной техники. М.: Химия, 1984. 592 с.
5. Стандарт организации: СТО Газпром 089-2010. Газ горючий природный, поставляемый и транспортируемый по магистральным газопроводам. Технические условия. М., 2010. 20 с.
6. Жданова Н. В., Халиф А. Л. Осушка углеводородных газов. М.: Химия, 1984. 192 с.
7. Николаев В. В., Бусыгина Н. В., Бусыгин И. Г. Основные процессы физической и физико-хими¬ческой переработки газа. М.: Недра, 1998. 184 с.
8. Дытнерский Ю. И. Процессы и аппараты химической технологии. М.: Химия, 1995. Ч. 2. Массообменные процессы и аппараты. 368 с.
9. Бекиров Т. М., Ланчаков Г. А. Технология обработки газа и конденсата. М.: ООО «Недра-Бизнесцентр», 1999. 596 с.
10. Новый справочник химика и технолога. Основные свойства неорганических, органических и элементоорганических соединений. СПб.: АНО НПО «Мир и Семья», 2002. Ч. 1. 964 с.
11. Идельчик И. Е. Аэродинамика технологических аппаратов. М.: Машиностроение, 1983. 351 с.
12. Искалиева С. К. Совершенствование технологии процесса адсорбционной осушки обессеренного газа: дис. ... канд. техн. наук. Астрахань, 2012. 156 с.