ВАК 05.13.01 Системный анализ, управление и обработка информации (по отраслям)
ВАК 05.13.06 Автоматизация и управление технологическими процессами и производствами (по отраслям)
ВАК 05.13.10 Управление в социальных и экономических системах
ВАК 05.13.18 Математическое моделирование, численные методы и комплексы программ
ВАК 05.13.19 Методы и системы защиты информации, информационная безопасность
УДК 004.932
ГРНТИ 20.01 Общие вопросы информатики
ГРНТИ 28.01 Общие вопросы кибернетики
ГРНТИ 49.01 Общие вопросы связи
ГРНТИ 50.01 Общие вопросы автоматики и вычислительной техники
ГРНТИ 82.01 Общие вопросы организации и управления
Объектом исследования является совершенствование и оценка качества цифровой обработки изображений с позиции устранения нежелательных дефектов (артефактов) в виде стробоскопических эффектов. Предложены новые способы оценки стробоскопических эффектов на изображениях, основанные на выделении контуров методами Canny и Prewitt. Рассматриваются возможности оценки стробоскопических эффектов на растровых изображениях, представленных цветовой моделью RGB. Оценка эффектов строба осуществляется путем сравнения контуров, выбранных методами Canny и Prewitt для отдельных цветовых компонентов (красный, зеленый, синий) и изображений серой шкалы. На выбранных контурах определяются их минимальные и максимальные координаты, по которым границы контуров дифференцируются. Как показали эксперименты, этот подход может служить численной метрикой для эффектов строба на растровых изображениях. Другой предложенный подход при оценке эффектов строба заключается в сравнении площади кругов, полученных из предыдущих расчетов. Отношение меньшей площади к большей площади может служить числовой метрикой для оценки эффектов строба на растровых изображениях. Предлагаемые метрики сопровождаются численными расчетами и графическими иллюстрациями.
цветовая модель RGB, Canny, Prewitt, контурные границы, метрика, эффекты строба, артефакты, растровые изображения, двумерные матрицы изображений
1. Starovoitov V. V., Starovoitov F. V. Sravnitel'nyi analiz bezetalonnykh mer otsenki kachestva tsifrovykh izobrazhenii [Comparative analysis of artifact-free measures of evaluating quality of digital images]. Sistemnyi analiz i prikladnaia informatika, 2017, no. 1 (13), pp. 24-32.
2. Gu K., Zhou J., Zhai G., Lin W., Bovik A. C. No-reference quality assessment of screen content pictures. IEEE Transactions on Image Processing, 2017, vol. 26, no. 8, pp. 4005-4017.
3. Zhang Lin, Zhang Lei, Bovik A. C. A feature-enriched completely blind local image quality analyzer. IEEE Transactions on Image Processing, 2015, vol. 24, no. 8, pp. 2579-2591.
4. Xue W., Zhang L., Mou X., Bovik A. C. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 2014, vol. 23, no. 2, pp. 684-695.
5. Al'-Askari M. A., Fedosin S. A., Afonin V. V. Analiz kachestva rastrovykh izobrazhenii [Analysis of quality of raster images]. Nauchno-tekhnicheskii vestnik Povolzh'ia, 2018, no. 1, pp. 107-109.
6. Al'-Askari M. A., Fedosin S. A., Afonin V. V. Veroiatnostnaia otsenka kachestva rastrovykh izobrazhenii [Probabilistic assessment of quality of raster images]. Nauchno-tekhnicheskii vestnik Povolzh'ia, 2018, no. 4, pp. 62-65.
7. Al-Askari M. A. The definition of blocking artifacts in raster images. Aktual'nye problemy i dostizheniia v estestvennykh i matematicheskikh naukakh: sbornik nauchnykh trudov po itogam Mezhdunarodnoi nauchno-prakticheskoi konferentsii № 5. Samara, NN: ITsRON Publ., 2018. Pp. 49-53.
8. Al-Askari M. A. The definition of artifacts of the type of blocking on raster images. Informatsionnye tekhnologii. Problemy i resheniia. Ufa, Izd-vo UGNTU, 2018. Vol. 1 (5). Pp. 83-87.
9. Egiazarian K., Astola J., Ponomarenko N., Lukin V., Battisti F., Carli M. New full-reference quality metrics based on HVS. Proceedings of the Second International Workshop on Video Processing and Quality Metrics. USA, Scottsdale, 2006. 4 p.
10. Dronnikova S. A., Gurov I. P. Uluchshenie kachestva izobrazhenii pri obrabotke videokadrov s razlichnym vremenem ekspozitsii [Improvement of image quality during video frame processing with different time of exposure]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2017, vol. 17, no. 3, pp. 424-430. DOI:https://doi.org/10.17586/2226-1494-2017-17-3-424-430.
11. Ponomarev S. V. Issledovanie metodov detektirovaniia granits poverkhnostei v zadache sovmeshcheniia izobrazhenii trekhmernykh stsen [Study of methods of detecting surface boundaries in the problem of overlapping images of 3D scenes]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2017, vol. 17, no. 4, pp. 694-701. DOI:https://doi.org/10.17586/2226-1494-2017-17-4-694-701.
12. Varlamova A. A., Kuznetsov A. V. Obnaruzhenie vstraivanii na izobrazheniiakh putem analiza artefaktov, obuslovlennykh parametrami sensora registriruiushchego ustroistva [Detecting imbeddings on images by analyzing artifacts stipulated by parameters of sensor of recording unit]. Komp'iuternaia optika, 2017, vol. 41, no. 6, pp. 920-930.
13. Gonsales R., Vuds R., Eddins S. Tsifrovaia obrabotka izobrazhenii v srede MATLAB [Digital processing of images in MATLAB environment]. Moscow, Tekhnosfera Publ., 2006. 616 p.
14. Gonsales R., Vuds R. Tsifrovaia obrabotka izobrazhenii [Digital processing of images]. Moscow, Tekhnosfera Publ., 2012. 1104 p.
15. Umaa Mageswari S., Sridevi M., Mala C. An experimental study and analysis of different image segmentation techniques. International Conference on Design and Manufacturing (IConDM2013) (Chennai, India, 18-20 July 2013). Procedia Engineering, vol. 64, part 1, pp. 46-55.