ГРНТИ 34.39 Физиология человека и животных
ГРНТИ 62.13 Биотехнологические процессы и аппараты
ГРНТИ 69.01 Общие вопросы рыбного хозяйства
ГРНТИ 69.25 Аквакультура. Рыбоводство
ГРНТИ 69.31 Промышленное рыболовство
ГРНТИ 69.51 Технология переработки сырья водного происхождения
ГРНТИ 87.19 Загрязнение и охрана вод суши, морей и океанов
Предлагается математическое описание распорной траловой доски разноглубинной траловой системы для численного моделирования методом точечных масс с использованием параллельной архитектуры графического процессора, основанное на представлении зависимости силовых характеристик доски от ее пространственных и кинематических характеристик в табличном виде. Таблицы построены с использованием метода расщепления. Для моделирования динамики разноглубинной траловой системы методом точечных масс необходимо знать все массы, сосредоточенные в узлах, зависимости расстояний между узлами от внутренних сил и значения внешних сил, приложенных к узлам (гидростатических, гидродинамических, сил тяги траулера). Для канатно-сетной части трала связью считается участок каната, троса, нитки или веревки, узлом - место их соединения. Для внедрения траловой доски в общую имитационную модель ее необходимо представить в виде узлов и связей. Для моделирования влияния траловой доски на динамику всей траловой системы по полю скоростей с использованием систем уравнений Навье - Стокса численным методом расщепления вычисляется поле давлений. Поскольку расчет внешних сил из-за большой трудоемкости метода расщепления на каждой итерации алгоритма точечных масс на персональном компьютере в реальном времени не представляется возможным, предлагается более быстрый способ, основанный на композиции методов расщепления для траловых досок и точечных масс для канатно-сетной части траловой системы с использованием табличных преобразований и линейной интерполяции промежуточных значений. Для каждого типа траловой доски производится моделирование методом расщепления для всех возможных комбинаций линейных и угловых скоростей с заданным шагом дискретизации, который определяется путем сравнения с имеющимися данными на основании необходимой точности. По результатам каждого шага вычисляется поле давлений, а затем и внешние силы, приложенные к узлам доски. Полученная шестимерная таблица ставит в соответствие скоростям внешние силы. Для описания конструкции траловой доски предлагается кусочно-линейная аппроксимация профиля всех ее элементов (крыло, предкрылки) в поперечной плоскости сечения с заданной степенью дискретизации, определяемой экспериментально с учетом заданной погрешности вычислений. Модель приемлема для описания большинства применяемых траловых досок.
разноглубинная траловая система, траловая доска, математическая модель, метод расщепления, точечные массы, графический процессор, компьютерная программа
1. Недоступ А. А., Ражев А. О., Соколова Е. В., Макаров В. В. Математическое моделирование орудий и процессов рыболовства. Ч. 3: моногр. Калининград: Изд-во КГТУ, 2016. 184 с.
2. Недоступ А. А., Ражев А. О., Соколова Е. В. Моделирование озерных закидных неводов методом конечных элементов // Рыбное хозяйство. 2016. № 2. С. 96-99.
3. Недоступ А. А., Ражев А. О. Расчет сил гидродинамического сопротивления сетных орудий рыболовства в задачах имитационного их моделирования // Изв. Калининград. гос. техн. ун-та. 2016. № 42. С. 185-192.
4. Марчук Г. И. Методы расщепления для решения нестационарных задач // Журнал вычислительной математики и математической физики. 1995. Т. 35, № 6. С. 843-849.
5. Березин С. Б., Пасконов В. М., Сахарных Н. А. Моделирование трехмерных течений методом расщепления с использованием параллельной архитектуры ГПУ // Вычислительные методы и программирование: новые вычислительные технологии. 2012. № 2. С. 75-81.
6. Zink J., Pettineo M., Hoxley J. Practical rendering and computation with Direct3D 11. CRC Press, 2011. 648 p.
7. Антоник В. Г., Срочко В. А. Решение задач оптимального управления на основе методов линеаризации // Журнал вычислительной математики и математической физики. 1992. Т. 32, № 7. С. 979-991.
8. Каханер Д., Моулер К., Нэш С. Численные методы и программное обеспечение. М.: Мир, 1998. 575 с.