ТЕРМОИЗБИРАНИЕ И ТЕРМОУСТОЙЧИВОСТЬ МОЛОДИ СТЕРЛЯДИ ACIPENSER RUTHENUS L., ВЫРАЩЕННОЙ В РАЗЛИЧНЫХ УСЛОВИЯХ
Аннотация и ключевые слова
Аннотация (русский):
Цель исследований - определение окончательно избираемой температуры (ОИТ) в зимний сезон года у двух групп молоди стерляди, выращенной ранее в прудах и бассейнах. При определении в начальный период опыта избираемой температуры (ИТ) и стабильного участка выбора - ОИТ - использован метод конечного термопреферендума, при котором рыбам предоставляется возможность свободного выбора температуры в условиях термоградиента. Длительность экспериментов составляла 10 суток. Исходная температура акклимации рыб - 12 °С. У двух групп стерляди определена также верхняя летальная температура методом критического термического максимума при нагреве воды со скоростью 9 °С/ч до значения летальной температуры - окончания движения жаберных крышек. Значение ОИТ у прудовой формы стерляди (22,5 °С) существенно выше, чем у бассейновой формы (19,0 °С). Возможной причиной более низкой ОИТ может быть пониженный уровень информационной обогащенности среды, в которой выращивалась бассейновая молодь рыб в летний период года. В то же время термоустойчивость обеих групп рыб оказалась одинаковой (32,8 °С), что указывает на независимость верхней температурной границы жизнедеятельности молоди стерляди от условий предварительного выращивания рыб. Полученные данные могут быть использованы в качестве величин, характеризующих оптимальные и пессимальные условия жизнедеятельности молоди стерляди на первом году жизни.

Ключевые слова:
рыбы, аквакультура, стерлядь, осетровые, избираемая температура, окончательно избираемая температура, верхняя летальная температура, критический термический максимум, летальная температура, сезон года
Текст
Текст произведения (PDF): Читать Скачать

Введение Осетровые - один из наиболее важных объектов пресноводной аквакультуры. Стерлядь Acipenser ruthenus L. - вид, обитающий в пресной воде, в том числе в водохранилищах Верхней Волги, интересна не только как ценный промысловый объект. Данный вид успешно культивируется в прудах и искусственных бассейнах. В настоящее время известен ряд экспериментальных данных по распределению стерляди в условиях термоградиентной среды [1-4 и др.]. А. С. Константинов и В. В. Зданович с соавторами подробно проанализировали энергетику, терморегуляционное поведение и рост в условиях осцилляции температуры среды у осетровых, преимущественно стерляди, русского осетра Acipenser güldenstädti Brandt и севрюги Acipenser stellatus Pallas [5-12]. Уже первые непродолжительные опыты по оценке поведения молоди стерляди показали, что по характеру распределения в термоградиентных условиях она существенно отличается от теплолюбивых карповых и окуневых видов рыб [13, 14]. Как и молодь других видов осетровых, сеголетки стерляди обычно выбирают диапазон значений температуры от 20 до 25 ºС, в то время как зона окончательно избираемой температуры (ОИТ) у большинства карповых и окуневых располагается несколько выше - от 25 до 30 ºС [15, 16]. Поскольку значение ОИТ высоко коррелирует с показателем эколого-физиологического оптимума (ЭФО) молоди рыб [15-17], оценка поведения и распределения сеголетков стерляди в условиях термоградиента представляет существенный интерес. При этом данные по термоустойчивости молоди стерляди у верхней границы ее жизнедеятельности практически отсутствуют. Цель исследований - экспериментальная оценка терморегуляционного поведения и термоустойчивости молоди стерляди, выращенной в прудах и бассейнах, в зимний сезон года. Материалы и методы исследования Стерлядь получена из рыбоводного хозяйства (Ярославская обл.), где с весны 2011 г. выращивалась в прудах и бассейнах. Ранней осенью она была перевезена в аквариальную лаборатории экологии Института биологии внутренних вод им. И. Д. Папанина РАН. До опытов в декабре 2011 г. и январе 2012 г. сеголетков содержали в аквариумах вместимостью 200 л в условиях фотопериода 12С : 12Т. Рыб кормили личинками хирономид в объеме 5 % от массы рыб при температуре воды 12 ± 1,5 ºС. Проведено 4 эксперимента по изучению распределения молоди стерляди (возраст 7-8 мес.). В каждом опыте использовано по 6 особей. Методика определения избираемой температуры (ИТ) и ОИТ, а также верхней летальной температуры (ВЛТ) с определением критического термического максимума (КТМ) и летальной температуры (ЛТ) при скорости нагрева воды 9 °C/ч у молоди рыб, так же как и схемы экспериментальных установок, подробно описаны ранее [15, 16, 18-20]. Диапазон значений температуры, создаваемый в градиентной установке с общей длиной всех рабочих камер 2,4 м, составлял от 10 до 30 °С. Высота слоя воды - 14 см. Температуру измеряли с помощью дистанционных датчиков температуры, расположенных в каждой камере установки. Распределение рыб, а также избираемую ими температуру на начальном этапе выбора обычно фиксировали 10 раз в светлое время суток с интервалом в 1-1,5 ч. За величину ИТ принимали температуру в отсеке, в котором находилась каждая особь в момент снятия показаний. Данные за каждые сутки опыта суммировали и делили на число наблюдений (для 10 рыб число наблюдений за сутки составляло от 80 до 100), получая средние значения ИТ. Если в течение 3-х суток и более средние значения ИТ достоверно не различались, эту температуру принимали за значение ОИТ, характеризующее зону стабильного выбора [15, 16]. Данные по ОИТ представлены в виде средних значений и их ошибок. Поскольку методические разработки А. М. Свирского и В. Г. Терещенко [21] и анализ многолетних данных [15, 16] показали, что ошибка определения ОИТ у группы особей в горизонтальных термоградиентных установках с учётом всех методических погрешностей составляет ± 1 ºС, различия показателей, превышающие 1 ºС, считались достоверными. Для определения КТМ и ЛТ использовали 60-литровые аквариумы с интенсивной системой аэрации. В опытах с молодью стерляди, которая при нагреве воды со скоростью 9 °C/ч постоянно плавала, переворачиваясь боком и кверху брюшком, фиксация момента обычного переворота для определения стандартного КТМ была практически невозможна. Вследствие этого для определения ВЛТ был использован показатель ЛТ - прекращение движения жаберных крышек. Длина тела и масса рыб, использованных в опытах с прудовой (12 экз.) молодью, составила 15,4 ± 0,3 см и 16,9 ± 0,9 г, с бассейновой (12 экз.) молодью - 13,6 ± 0,6 см и 13,6 ± 0,9 г соответственно. Результаты исследования и их обсуждение Общая картина терморегуляционного поведения молоди стерляди (4 опыта) в обеих группах представлена на рисунке. Подпись: Температура, °С Температура, избираемая молодью стерляди, выращенной в прудах (опыты I и II) и в бассейнах (опыты III и IV) Распределение молоди стерляди, выращенной в прудах, в термоградиентных условиях характеризовалось стабильным повышением уровня ИТ с 1-х по 6-е сутки (с 16 до 23 °С). В этот период сеголетки продвинулись вверх по температурному градиенту на 5,0-5,5 °С. После этого, в течение последующих 6-10-ти суток, статистически значимых колебаний ИТ у молоди рыб не отмечено. Значения ОИТ составили 22,8 ± 0,2 и 22,2 ± 0,2 °С для 1-го и 2-го опытов соответственно. Среднее значение ОИТ для двух экспериментов - 22,5 ± 0,1 °С. Диапазон колебаний значений ИТ на протяжении опытов был различным. Динамика значений ИТ в течение первых суток выявила незначительное, но стабильное повышение (0,8 °С). В остальные дни наблюдались колебания значений ИТ (разница между наибольшим и наименьшим значением ИТ) в течение суток в пределах 2,0-6,1 °С. После достижения особями зоны ОИТ амплитуда колебаний показателя ИТ в течение суток находилась в пределах 3,0-3,7 °С. Терморегуляционное поведение молоди стерляди, выращенной в бассейнах, характеризовалось выходом рыб в зону ОИТ на 5-е сутки опыта, где они оставались практически до окончания наблюдения. Уровень ОИТ за 5-8-е сутки составил 18,8 ± 0,1 и 19,3 ± 0,1 °С в 1-м и 2-м опытах соответственно. Среднее значение ОИТ по двум экспериментам - 19,0 ± 0,1 °С. Терморегуляционная активность в первый день опыта характеризовалась незначительным повышением ИТ - на 1,4-1,6 °С. Колебания ИТ в течение суток в зоне ОИТ находились в диапазоне 1,8-6,7 °С. Некоторые изменения уровня ИТ за сутки отмечены в конце опытов. Интересно отметить три поведенческие особенности стерляди. Первая - частое движение по отсекам установки кверху брюшком, вторая - периодическая «стойка» рылом вверх и передвижение между отсеками в таком положении, третья - сравнительно широкий диапазон постоянного передвижения по всему градиенту температуры в диапазоне от 14 до 29 ºС. Ранее было показано, что молодь стерляди массой 1,3-1,5 г в термоградиентных условиях избирает температуру ~23,0 ºС [12]. В единичном опыте А. К. Смирнова [2] 4-месячные сеголетки стерляди, выращенные, начиная с икры, в экспериментальных лабораторных условиях (аквариумы 600 л), в сентябре, начиная с 5-го дня опыта, избирали ОИТ равную 23,6 ± 0,2 ºС, что несколько выше полученных нами значений. Значение ОИТ 22,5 ºС для прудовой группы стерляди близкó по величине к этим данным, несмотря на то, что возраст стерляди в наших экспериментах значительно больше. Разница ОИТ у двух групп рыб составила 3,5 °С. Существенно то, что значение ОИТ у второй группы стерляди (19,0 ºС) достоверно ниже. Более низкое значение ОИТ у бассейновой стерляди в сравнении с прудовой может быть обусловлено пониженным уровнем информационной обогащенности среды, в которой выращивалась бассейновая молодь рыб в летний период года [22, 23]. Возможно, сказалась и более низкая температура воды, при которой выращивались сеголетки стерляди в бассейнах. Однако ВЛТ, определенная методом КТМ по показателю ЛТ (нагрев со скоростью 9,0 ºС/ч), у двух исследованных групп стерляди не отличалась и составила 32,8 ºС. Не исключено, что именно различия в условиях среды при выращивании молоди стерляди (пруд и бассейн) являются причиной того, что значение ОИТ, чаще всего совпадающее с показателем оптимальной температуры роста и ЭФО [17], оказалось несколько пониженным у бассейновой формы стерляди. Развитие молоди стерляди в условиях сенсорной депривации не только приводит к закреплению у нее неадекватных поведенческих навыков, но и снижает уровень ее температурного оптимума, что, в свою очередь, влияет на эффективность роста и развития рыб. В то же время верхняя температурная граница жизнедеятельности молоди стерляди, очевидно, не зависит от условий предварительного выращивания рыб. Впервые полученные в зимний сезон года данные по термоизбиранию и термоустойчивости молоди стерляди, которая выращивалась в различных условиях информационной обогащенности среды, характеризуют ее адаптационные возможности по отношению к температурному фактору. Значения ОИТ и ЛТ могут быть использованы в качестве исходных величин, характеризующих оптимальные и пессимальные температурные условия жизнедеятельности. Вполне очевидна необходимость продолжения исследований в другие сезоны года, а также проведения опытов по определению верхней температурной границы жизнедеятельности данного вида для получения не только результатов, характеризующих возможные оптимальные условия содержания или выращивания, но и уровень аномально высоких значений температуры, которые могут привести к гибели сеголетков летом. Осетровые - исключительно важный модельный объект при изучении различных форм термоадаптаций рыб, в первую очередь потому, что их термальная ниша в диапазоне значений температуры жизнедеятельности не совпадает с термальными нишами многих других пресноводных видов (карповые, окуневые, сиговые и лососевые) рыб. Изучение температурных адаптаций осетровых рыб, в первую очередь температурного оптимума и верхних температурных границ жизнедеятельности, исключительно важно для нужд аквакультуры, а также для решения вопросов искусственного воспроизводства осетровых стад. Заключение Таким образом, в ходе исследований установлены различия ОИТ в зимний сезон года у двух групп молоди стерляди, выращенной ранее в прудах и бассейнах. Значение ОИТ у прудовой формы стерляди (22,5 °С) существенно выше, чем у бассейновой формы (19,0 °С). Возможной причиной более низкой ОИТ может быть пониженный уровень информационной обогащенности среды, в которой выращивалась бассейновая молодь рыб в летний период года. В то же время термоустойчивость обеих групп рыб оказалась одинаковой (32,8 °С), что указывает на независимость верхней температурной границы жизнедеятельности молоди стерляди от условий предварительного выращивания рыб. Полученные данные могут быть использованы в качестве величин, характеризующих оптимальные и пессимальные условия жизнедеятельности молоди стерляди на первом году жизни.
Список литературы

1. Алабастер Дж. Критерии качества воды для пресноводных рыб / Дж. Алабастер, Р. Ллойд. М.: Легкая и пищ. пром-сть, 1984. 344 с.

2. Герасимов Ю. В. Рост и питание молоди стерляди Acipenser ruthenus (Acipenseridae) в прудовых условиях при различной длительности предварительного содержания в бассейнах / Ю. В. Герасимов, О. Л. Васюра // Биол. внутр. вод. 2013. № 2. С. 64-72.

3. Голованов В. К. Температурный оптимум и температурные границы жизнедеятельности осетровых видов рыб / В. К. Голованов // Аквакультура осетровых рыб: Достижения и перспективы развития». IV Междунар. науч.-практ. конф., Астрахань, 13-15 марта 2006 г.: материалы докл. М.: Изд-во ВНИРО, 2006. С. 21-24.

4. Голованов В. К. Температурные требования осетровых видов рыб. Оптимум и верхние границы жизнедеятельности / В. К. Голованов // Сохранение и восстановление биологических ресурсов Каспийского моря (посвящается 100-летию Азербайджан. науч.-исслед. ин-та рыбного хоз-ва): сб. ст. Баку: Элм, 2013. C. 371-376.

5. Голованов В. К. Температурные критерии жизнедеятельности пресноводных рыб / В. К. Голованов. М.: Полиграф-Плюс, 2013. 300 с.

6. Голованов В. К. Эколого-физиологические закономерности распределения и поведения пресноводных рыб в термоградиентных условиях / В. К. Голованов // Вопр. ихтиологии. 2013. Т. 53, № 3. С. 286-314.

7. Голованов В. К. Влияние скорости нагрева воды на термоустойчивость и пищеварительные карбогидразы карпа Cyprinus carpio (L.) в различные сезоны года / В. К. Голованов, А. К. Смирнов, И. Л. Голованова // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2011. № 1. С. 82-86.

8. Голованов В. К. Сравнительный анализ окончательно избираемой и верхней летальной температуры у молоди некоторых видов пресноводных рыб / В. К. Голованов, А. К. Смирнов, Д. С. Капшай // Тр. Карел. НЦ РАН. Сер.: Эксперим. биология. 2012. № 2. С. 70-75.

9. Голованов В. К. Особенности термоизбирания некоторых видов рыб, обитающих в водоемах Верхней Волги / В. К. Голованов, В. Б. Вербицкий, Д. С. Капшай, А. С. Маврин, И. А. Власова // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2013. № 3. С. 91-97.

10. Дзян Яо Цинн. Изменения предпочитаемых температур у некоторых видов осетровых рыб при разном уровне пищевого насыщения / Дзян Яо Цинн // Науч. сообщ. Ин-та физиол. АН СССР. 1959. Вып. 1. С. 125-127.

11. Касимов Р. Ю. Изменение отношения к свету и температуре у некоторых видов куринских осетровых в раннем онтогенезе / Р. Ю. Касимов // Осетровое хозяйство в водоемах СССР. М., 1963. С. 65-68.

12. Константинов А. С. Некоторые характеристики поведения молоди рыб в термоградиентном поле / А. С. Константинов, В. В. Зданович // Вестн. Моск. ун-та. Сер. 16. Биология. 1993. № 1. С. 32-38.

13. Константинов А. С. Влияние колебаний температуры на процессы рыбопродуцирования / А. С. Константинов, В. В. Зданович // Водн. ресурсы. 1996. Т. 23, № 6. С. 760-767.

14. Константинов А. С. Влияние осцилляции температуры на гематологические показатели и метаболизм рыб / А. С. Константинов, В. В. Зданович // Вестн. Моск. ун-та. Сер. 16. Биология. 2007. № 2. С. 14-18.

15. Константинов А. С. Рост и энергетика молоди стерляди Acipenser ruthenus в оптимальном стационарном терморежиме и при плавании в термоградиентном пространстве в зависимости от накормленности рыб / А. С. Константинов, В. В. Зданович, В. Я. Пушкарь, В. В. Речинский, Т. Н. Костоева // Вопр. ихтиологии. 2005. Т. 45, № 6. С. 831-836.

16. Константинов А. С. Энергобюджет молоди осетровых рыб при свободном плавании в термоградиентном пространстве / А. С. Константинов, В. Я. Пушкарь, В. В. Зданович, О. В. Аверьянова, В. В. Речинский // Вестн. Моск. ун-та. Сер. 16. Биология. 2004. № 1. С. 38-43.

17. Константинов А. С. Величина и сопряженность изменения параметров роста и энергетики рыб, вызываемого осцилляцией температуры / А. С. Константинов, В. Я. Пушкарь, В. В. Зданович, Костоева Т. Н. // Вестн. Моск. ун-та. Сер. 16. Биология. 2007. № 4. С. 22-27.

18. Константинов А. С. Влияние колебаний температуры на рост, энергетику и физиологическое состояние молоди севрюги Acipenser stellatus Pallas / А. С. Константинов, А. М. Шолохов // Вестн. Моск. ун-та. Сер. 16. Биология. 1993. № 2. С. 43-47.

19. Никоноров С. И. Эколого-генетические проблемы искусственного воспроизводства осетровых и лососевых видов / С. И. Никоноров, Л. В. Витвицкая. М.: Наука, 1993. 254 с.

20. Свирский А. М. Точность определения температуры, избираемой рыбами в установке с горизонтальным термоградиентом / А. М. Свирский, В. Г. Терещенко // Биол. внутр. вод. Информ. бюл. Л., 1992. № 92. С. 85-88.

21. Смирнов А. К. Избираемая температура молоди стерляди Acipenser ruthenus L. / А. К. Смирнов // Биологические ресурсы Белого моря и внутренних водоемов Европейского Севера: материалы XXVIII Междунар. конф., 5-8 октября 2009 г., г. Петрозаводск, Республика Карелия, Россия. Петрозаводск: КарНЦ РАН, 2009. С. 511-514.

22. Jobling M. Temperature tolerance and the final preferendum - rapid methods for the assessment of optimum growth temperature / M. Jobling // J. Fish. Biol. 1981. Vol. 19, no. 4. P. 439-455.

23. Zdanovich V. V. Alteration of thermoregulation behavior in juvenile fish in relation to satiation level / V. V. Zdanovich // Journal of Ichthyology. 2006. Vol. 46. Suppl. 2. P. 188-193.


Войти или Создать
* Забыли пароль?