ОБЗОР НЕКОТОРЫХ АСПЕКТОВ ЭКОЛОГИИ СТЕРЛЯДИ (ACIPENSER RUTHENUS LINNAEUS, 1758)
Аннотация и ключевые слова
Аннотация (русский):
Приведён обзор научных работ экологии и биологии стерляди, касающихся её распространению, нереста, миграций, питания и аккумуляции тяжёлых металлов в органах и тканях. Установлено, что в природных популяциях имеются две морфы - с острым и тупым рострумом. Предполагается, что для них характерно временное разделение нереста. В условиях искусственного выращивания у особей стерляди снижается вариативность морфометрических признаков, что может быть результатом как одинаковых условий выращивания, так и снижения генетического разнообразия. Цвет фона бассейнов, используемых для выращивания, может влиять на линейно-весовые характеристики рыб: в светлых - рыбы меньших размеров, в тёмных - более крупные. Определено, что окраска тела вида, схожая с донным субстратом, является высокоэффективной защитой от хищников в мутной среде. В результате исследования популяций стерляди Обь-Иртышского и Енисейского бассейнов установлено, что в первой из них показатель генетического разнообразия выше. Миграции стерляди по своей протяжённости незначительные - до 250 км. Нерестится в весенне-летний период, в зимнее время концентрируется на русловых зимовальных ямах. Ведущую роль в питании стерляди играют представители бентоса и зооперифитона, характерные для литофильных, литореофильных и псаммореофильных биоценозов. Максимальные концентрации тяжёлых металлов отмечены в печени и жабрах, минимальные - в мышцах. Наибольшая аккумуляция элементов отмечена для Fe, Al и Zn, минимальная - для Cd и Сo.

Ключевые слова:
стерлядь, миграции, нерест, аккумуляция тяжёлых металлов, генетическое разнообразие, защита от хищников
Текст
Введение Значительное повсеместное снижение запасов осетровых видов рыб в результате утраты нерестовых площадей [1, 2], загрязнения водоёмов [2], незаконного браконьерского вылова [1, 3] повысило интерес к изучению аспектов их экологии и биологии на основе современных методик и оборудования, проведению приоритетных природоохранных мероприятий, в том числе изучению их в качестве объектов аквакультуры [4-9]. Численность многих видов осетровых рыб в естественной среде в настоящее время продолжает сокращаться, поддержание численности их популяций происходит в основном за счёт рыбоводных заводов, занимающихся содержанием маточных стад и выпуском в естественную среду жизнестойкой молоди этих видов рыб. В бассейне р. Иртыш воспроизводством молоди сибирского осетра (Acipenser baerii Brandt, 1869) и стерляди (Acipenser ruthenus Linnaeus, 1758) занимается ФГУП «Абалакский экспериментальный рыборазводный завод», ежегодно выпускающий в магистраль реки более 2 млн шт. молоди данных видов рыб. Экологические особенности вида Стерлядь, обитающая в бассейне р. Иртыш, является одним из наиболее мелких представителей семейства осетровых видов рыб и подвергается интенсивному незаконному вылову [3]. В связи с этим цель нашей работы - изучить некоторые экологические аспекты жизненного цикла стерляди на основе научных работ российских и зарубежных исследователей. Распространение и внешние признаки. Стерлядь - широко распространённый пресноводный вид осетровых, населяющий бассейны рек Чёрного, Азовского, Каспийского, Балтийского, Белого, Баренцева, Карского морей, р. Северная Двина, в р. Западная Двина и Печора - акклиматизант [10]. Имеет бахромчатые усики, также от других представителей рода Acipenser отличается бόльшим количеством боковых жучек (56-71). Достигает длины 1,25 м и массы 16 кг, средние размеры значительно меньше [10]. Подтверждено [11], что различный цвет фона в бассейнах, используемых при выращивании особей данного вида, приводит к различным линейно-весовым характеристикам одновозрастных особей стерляди: при светлых тонах (белый цвет) особи рыб достигают меньших размеров, при более тёмных (синий, серый), наоборот, - больших. Такая закономерность, по-видимому, будет проявляться и в естественной среде в зависимости от цвета донного субстрата. Установлено [12], что окраска тела у осетровых рыб, схожая с субстратом в мутной водной среде, является высокоэффективной стратегией защиты от хищников. Изучение генетического разнообразия Обь-Иртышской и Енисейской популяций выявило, что данные популяции изолированы друг от друга, при этом в Обь-Иртышской показатель генетического разнообразия значительно выше [13]. Низкий показатель изменчивости морфологических признаков отмечен у рыб, выращиваемых в аквакультуре, по сравнению с особями из дикой популяции, что в свою очередь может быть вызвано одинаковыми условиями выращивания (кормление, температура и др.), уменьшающими вариативность экологических факторов, либо в результате снижения генетического разнообразия [14]. В бассейне Нижней Волги у стерляди выделяют несколько популяций, особи которых отличаются некоторыми пластическими характеристиками, линейными темпами роста, наличием паразитов, характерных для определённых участков водотока [15]. Дополнительно показано [16, 17], что распределение стерляди в Нижней Волге и Оби определяется расположением нерестилищ и мест зимовки отдельных популяций, а также степенью миграций молоди, при этом [17] протяжённость миграции стерляди незначительная и не превышает 250 км. У стерляди в настоящее время выделяют существование двух морф: одна с длинным и остроконечным рострумом, другая - с коротким и более тупым; предполагают, что для них характерны различия в репродуктивном поведении (временнόе разделение при нересте) [18, 19]. Питание. Известно [20], что на голове у осетровых рыб (вентральная сторона рострума) имеются электрорецепторы (ампулы Лоренцини), которые считаются чувствительными к слабым электрическим полям в водных средах и используются рыбами для поиска кормовых объектов, при этом данную особенность особи осетровых задействуют также во время нереста и миграций. Вместе с этим для поиска корма осетровые активно используют и хеморецепцию [21]. Интенсивность питания стерляди меняется в течение года: возрастает при достижении температуры воды 12 °С и выше, снижается при осеннем похолодании [22]. Значительную роль в питании стерляди играют беспозвоночные (бентос и зооперифитон), характерные для литофильных, литореофильных и псаммореофильных биоценозов [10, 23-26]. До трёхлетнего возраста стерлядь питается преимущественно личинками хирономид и ручейников, амфиподами и пиявками [24], при этом известно [27], что, являясь типичными бентофагами, особи данного вида уже на личиночной стадии питаются зоопланктоном и микрозообентосом. Нерест, миграции. Половая зрелость наступает в возрасте 5-7 лет, плодовитость может превышать 100 тыс. икринок у крупных особей [10]. Нерестится в весенне-летний период на отдельных участках реки, которые характеризуются комплексом абиотических факторов - тип субстрата, температура воды, скорость течения и др. [10, 28]. К местам нереста и нагула особи стерляди перемещаются при весеннем вскрытии рек и температуре воды 1,8-2,0 °С, наибольшая миграционная активность в этот период отмечена при повышении температуры воды до 4-7 °С, нерестовые участки расположены на галечниково-песчаных грунтах с быстрым течением [10, 28]. При этом определено, что наибольший показатель критической скорости для стерляди зарегистрирован при температуре воды 15 °С, отклонение от этого значения приводит к повышенному потреблению кислорода и снижению показателя критической скорости [29]. В зимний период особи стерляди концентрируются на русловых зимовальных ямах - участках рек со значительными глубинами [10, 28]. На участке Нижнего Иртыша наиболее крупные ямы как по площади, так и по батиметрическим характеристикам - Горнослинкинская и Кондинская [30, 31]. Для изучения миграций осетровых рыб в течение жизненного цикла [32], пространственного, сезонного и суточного распределения [33, 34] исследователями применяется методика геохимического анализа лучей плавников и акустические метки. Данные методики позволяют получать данные о миграции и распределении рыб прижизненно, без их гибели. Аккумуляция тяжёлых металлов. Донные бентосоядные рыбы являются достоверными индикаторами загрязнения как воды, так и донных отложений [35]. В связи с этим химический анализ органов и тканей (жабры, мышцы, печень, кишечник) стерляди [36], включающий измерение концентраций тяжёлых металлов и других элементов: Cd, As, Pb, Cr, Hg, Cu, Ni, Fe, Mn, Al и Zn, а также и гистопатологический анализ (кожа, жабры, ткани печени), выявили наличие сублетальных гистопатологических изменений, наиболее выраженных в печени и коже, при этом максимальные концентрации поллютантов отмечены в печени и жабрах [35-37], минимальные - в мышцах [38]. Наибольшие концентрации отмечены для Fe, Al и Zn [37, 39], минимальные для Cd и Сo [39]. Канонический дискриминантный анализ по показателю концентрации тяжёлых металлов у стерляди выявил значительную дифференциацию среди нескольких изученных местностей. Такая закономерность отражает то, что исследуемый показатель у рыб данного вида является специфичным для определённых участков водотока [36], на основе данного показателя также возможно определение преимущественного биотопического распределения рыб. Заключение Таким образом, стерлядь является широко распространённым пресноводным представителем семейства осетровых. Питается бентосными беспозвоночными. Совершает незначительные нерестовые миграции, в зимний период концентрируется на русловых зимовальных ямах. Является хорошим индикатором загрязнения воды и донных отложений, что отражается в биоаккумуляции поллютантов и гистопатологических изменениях в органах и тканях.
Список литературы

1. Smederevac-Lalić M., Jarić I., Višnjić-Jeftić Ž., Skorić S., Cvijanović G., Gačić Z., Lenhardt M. Management approaches and aquaculture of sturgeons in the Lower Danube region countries // Journal of Applied Ichthyology. 2011. N. 27. P. 94-100. DOI:https://doi.org/10.1111/j.1439-0426.2011.01859.x.

2. Haxton T. J., Cano T. M. A global perspective of fragmentation on a declining taxon - the sturgeon (Acipenseriformes) // Endangered species research. 2016. N. 31. P. 203-210. URL: https://doi.org/10.3354/esr00767 (дата обращения: 21.07.2018).

3. Литвиненко А. И., Ростовцев А. А., Зайцев В. Ф., Бессараб А. С. Оценка величины браконьерского лова сибирской стерляди - Аcipenser rutenus marsiglii Brandt в среднем течении р. Иртыш // Вопросы рыболовства. 2013. Т. 14. N. 1 (53). С. 94-105.

4. Tsvetkova L. I., Cosson J., Linhart O., Billard R. Motility and fertilizing capacity of fresh and frozen-thawed spermatozoa in sturgeons Acipenser Baeri and A. ruthenus // Journal of Applied Ichthyology. 1996. N. 12. P. 107-112. DOI:https://doi.org/10.1111/j.1439-0426.1996.tb00071.x.

5. Lahnsteiner F., Berger B., Horvath A., Urbanyi B. Studies on the semen biology and sperm cryopreservation in the starlet, Acipenser ruthenus L. // Aquaculture Researches. 2004. N. 35. P. 519-528. DOI:https://doi.org/10.1111/j.1365-2109.2004.01034.x.

6. Secor D., Arefjev V., Nikolaev A., Sharov A. Restoration of sturgeons: lessons from the Caspian Sea Sturgeon Ranching Programme // Fish and Fisheries. 2000. N. 1. P. 215-230. DOI:https://doi.org/10.1111/j.1467-2979.2000.00021.x.

7. Pikitch E. K., Doukakis P., Lauck L., Chakrabarty P., Erickson D. L. Status, trends and management of sturgeon and paddlefish fisheries // Fish and Fisheries. 2005. N. 6. P. 233-265. DOI:https://doi.org/10.1111/j.1467-2979.2005.00190.x.

8. Ganus J. E., Mullen D. M., Miller B. T., Cobb V. A. Quantification of emigration and habitat use inform stocking rates of lake sturgeon (Acipenser fulvescens, Rafinesque, 1817) in the Cumberland River, Tennessee, USA // Journal of Applied Ichthyology. 2018. N. 34. P. 331-340. URL: https://doi.org/10.1111/jai.13568 (дата обращения: 21.07.2018).

9. McAdam S. O., Crossman J. A., Williamson C., St-Onge I., Dion R., Manny B. A., Gessner J. If you build it, will they come? Spawning habitat remediation for sturgeon // Journal of Applied Ichthyology. 2018. N. 34. P. 258-258. URL: https://doi.org/10.1111/jai.13566 (дата обращения: 21.07.2018).

10. Атлас пресноводных рыб России. М.: Наука, 2003. Том 1. 378 с.

11. Bayrami A., Noverian A. H., Sharif A. E. Effects of background colour on growth indices and stress of young sterlet (Acipenser ruthenus) in a closed circulated system // Aquaculture Researches. 2017. N. 48. P. 2004-2011. DOI:https://doi.org/10.1111/are.13033.

12. Wishingrad V., Chivers D. P., Ferrari M. C., Foster S. Relative cost/benefit trade-off between cover-seeking and escape behaviour in an ancestral fish: the importance of structural habitat heterogeneity // Ethology. 2014. N. 120. P. 973-981. DOI:https://doi.org/10.1111/eth.12269.

13. Pobedintseva M. A., Makunin A. I., Kichigin I. G., Kulemzina A. I., Serdyukova N. A., Romanenko S. A., Vorobieva N. V., Interesova E. A., Korentovich M. A., Zaytsev V. F., Mischenko A. V., Zadelenov V. A., Yurchenko A. A., Sherbakov D. Y., Graphodatsky A. S., Trifonov V. A. Population genetic structure and phylogeography of sterlet (Acipenser Ruthenus, Acipenseridae) in the Ob and Yenisei river basins // Mitochondrial DNA. 2018. Part A. P. 1-9. DOI:https://doi.org/10.1080/24701394.2018.1467409.

14. Lenhardt M., Prokes M., Jaric I. Z., Barus V., Kolarevic J., Krupka I., Cvijanovic G., Cakic P., Gacic Z. Comparative analysis of morphometric characters of juvenile sterlet Acipenser ruthenus L. from natural population and aquaculture // Journal of Fish Biology. 2004. N. 65. P. 320-320. DOI:https://doi.org/10.1111/j.0022-1112.2004.0559o.x.

15. Kalmykov V. A., Ruban G. I., Pavlov D. S. On the populational structure of sterlet Acipenser ruthenus (Acipenseridae) from the Volga Lower reaches // Journal of Ichthyology. 2009. N. 49 (4). P. 339-347. DOI:https://doi.org/10.1134/s0032945209040067.

16. Веснина Л. В., Журавлев В. Б., Новоселов В. А. и др. Водоёмы Алтайского края. Новосибирск: Наука, 1999. 279 с.

17. Kalmykov V. A., Ruban G. I., Pavlov D. S. Migrations and resources of sterlet Acipenser Ruthenus (Acipenseridae) from the Lower reaches of the Volga river // Journal of Ichthyology. 2010. N. 50 (1). P. 44-51. DOI:https://doi.org/10.1134/s0032945210010066.

18. Lenhardt M., Cakic P., Kolarevic J., Gacic Z. Morphometric recognition of two morphs in sterlet (Acipenser ruthenus) population induced by different reproductive behavior // Journal of Fish Biology. 2003. N. 63. P. 252-252. DOI:https://doi.org/10.1111/j.1095-8649.2003.216bf.x.

19. Ognjanović D., Nikolić V., Simonović P. Morphometrics of two morphs of sterlet, Acipenser ruthenus L., in the middle course of the Danube River (Serbia) // Journal of Applied Ichthyology. 2008. N. 24. P. 126-130. DOI:https://doi.org/10.1111/j.1439-0426.2007.01036.x.

20. Zhang X., Song J., Fan C., Guo H., Wang X., Bleckmann H. Use of electrosense in the feeding behavior of sturgeons // Integrative Zoology. 2012. N. 7. P. 74-82. DOI:https://doi.org/10.1111/j.1749-4877.2011.00272.x.

21. Liang X., Xiao H., Wen H., Wei Q. Sensory variability in Chinese sturgeon in relation to fish feeding experience on formulated diets // Journal of Applied Ichthyology. 2011. N. 27. P. 733-736. DOI:https://doi.org/10.1111/j.1439-0426.2010.01640.x.

22. Вотинов Н. П. Осетровые рыбы Обского бассейна. Тюмень: Тюмен. книжн. изд-во, 1958. 43 с.

23. Skóra M. E., Bogacka-Kapusta E., Morzuch J., Kulikowski M., Rolbiecki L., Kozłowski K., Kapusta A. Exotic sturgeons in the Vistula lagoon in 2011, their occurrence, diet and parasites, with notes on the fishery background // Journal of Applied Ichthyology. 2018. N. 34. P. 33-38. URL: https://doi.org/10.1111/jai.13577 (дата обращения: 21.07.2018).

24. Strel’nikova A. P. Feeding of juvenile sterlet (Acipenser ruthenus, Acipenseridae) in the Danube River midstream // Journal of Ichthyology. 2012. N. 52. P. 85. URL: https://doi.org/10.1134/S0032945212010110 (дата обращения: 21.07.2018).

25. Djikanovic V., Skoric S., Lenhardt M., Smederevac-Lalic M., Visnjic-Jeftic Z., Spasic S., Mickovic B. Review of sterlet (Acipenser ruthenus L. 1758) (Actinopterygii: Acipenseridae) Feeding habits in the river Danube, 1694-852 river km // Journal of Natural History. 2014. N. 49 (5-8). P. 411-417. DOI:https://doi.org/10.1080/00222933.2013.877991.

26. Визер А. М., Дорогин М. А. Питание и рост молоди стерляди (Acipenser ruthenus marsiglii Brandt, 1883) Новосибирского водохранилища // Вестн. рыбохозяйственной науки. 2015. Т. 2. № 1 (5). С. 27-31.

27. Грезе В. П. Кормовые ресурсы рыб р. Енисея и их использование // Известия ВНИОРХ. 1957. Т. 41. 244 с.

28. Третьякова Т. В. Сезонное распределение сибирской стерляди на Тобольско-Уватском участке реки Иртыш // Естественные и математические науки в современном мире. 2014. № 24. С. 140-144.

29. Mandal P., Cai L., Tu Z., Johnson D., Huang Y. Effects of acute temperature change on the metabolism and swimming ability of juvenile sterlet sturgeon (Acipenser ruthenus, Linnaeus 1758) // Journal of Applied Ichthyology. 2016. N. 32. P. 267-271. DOI:https://doi.org/10.1111/jai.13033.

30. Чемагин А. А. Особенности летнего распределения рыб в акватории Горнослинкинской зимовальной русловой ямы реки Иртыш // Вестн. Томск. гос. ун-та. Сер.: Биология. 2017. № 40. С. 224-243.

31. Чемагин А. А. Таксономический состав рыбного населения зимовальных ям в нижнем Иртыше // Междунар. журнал прикладных и фундаментальных исследований. 2016. № 12-3. С. 504-506.

32. Sellheim K., Willmes M., Hobbs J. A., Glessner J. J., Jackson Z. J., Merz J. E. Validating Fin Ray Microchemistry as a Tool to Reconstruct the Migratory History of White Sturgeon // Transactions of the American Fisheries Society. 2017. N. 146. P. 844-857. DOI:https://doi.org/10.1080/00028487.2017.1320305.

33. Altenritter M. E., Wieten A. C., Ruetz C. R., Smith, K. M. Seasonal spatial distribution of juvenile lake sturgeon in Muskegon Lake, Michigan, USA // Ecology of Freshwater Fish. 2013. N. 22. P. 467-478. DOI:https://doi.org/10.1111/eff.12040.

34. Hrenchuk C. L., McDougall C. A., Nelson P. A., Barth C. C. Movement and habitat use of juvenile Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in a large hydroelectric reservoir (Nelson River, Canada) // Journal of Applied Ichthyology. 2017. N. 33. P. 665-680. URL: https://doi.org/10.1111/jai.13378 (дата обращения: 21.07.2018).

35. Rašković B. , Poleksić V., Višnjić-Jeftić Ž., Skorić S., Gačić Z., Djikanović V., Jarić I., Lenhardt M. Use of histopathology and elemental accumulation in different organs of two benthophagous fish species as indicators of river pollution // Environmental Toxicology. 2015. N. 30. P. 1153-1161. DOI:https://doi.org/10.1002/tox.21988.

36. Poleksic V., Lenhardt M., Jaric I., Djordjevic D., Gacic Z., Cvijanovic G., Raskovic B. Liver, gills, and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758) // Environmental Toxicology and Chemistry. 2010. N. 29. P. 515-521. DOI:https://doi.org/10.1002/etc.82.

37. Štrbac S., Kašanin-Grubin M., Jovančićević B., Simonović P. Bioaccumulation of heavy metals and microelements in silver bream (Brama brama L.), northern pike (Esox Lucius L.), sterlet (Acipenser ruthenus L.), and common carp (Cyprinus carpio L.) from Tisza river, Serbia // Journal of Toxicology and Environmental Health. 2015. N. 78 (11). P. 663-665. DOI:https://doi.org/10.1080/15287394.2015.1023406.

38. Jarić I., Višnjić-Jeftić Ž., Cvijanović G., Gačić Z., Jovanović L., Skorić S., Lenhardt M. Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube river in Serbia by ICP-OES // Microchemical Journal. 2001. N. 98 (1). P. 77-81. DOI:https://doi.org/10.1016/j.microc.2010.11.008.

39. Sytnik Yu., Pilipenko Yu., Shevchenko P., Plugatarev V., Kolesnyk N., Simon M., Melnyk A., Dorofey N. Heavy Metals in organs and tissues of sterlet (Acipenser Ruthenus L.) in the Dnieper-Bug estuary // Ribogospodarsʹka Nauka Ukraïni. 2016. N. 3 (37). P. 5-21. DOI:https://doi.org/10.15407/fsu2016.03.005.


Войти или Создать
* Забыли пароль?