Текст произведения
(PDF):
Читать
Скачать
Введение С каждым годом в России всё актуальнее ставится вопрос о состоянии рыболовного флота. По данным [1], в России в 2010 г. численность рыбодобывающего флота составляет 3 085 единиц, из которых 434 - рефрижераторы различного назначения (включая производственные рефрижераторы); отмечено, что более 80 % судов имеют превышенный срок эксплуатации. К 2017 г. аналогичный качественный состав флота составляет лишь 247 транспортных и производственных судов, включая малый и речной флот. В работе [2] указано, что данный показатель ниже на 28 % для обрабатывающего и на 3 % для приёмно-транспортного флота в сравнении с численностью на 2016 г. Сокращение флота ведёт к повышению цен на производимый продукт и его качество. Источник [3] сообщает о введении пакета нормативно-правовых актов, распределения квот в рыболовной отрасли для строительства новых судов, что позволило в 2017 г. сделать заказ на 33 судна на российских судоверфях. По экспертным оценкам [3], в рамках данного пакета планируется строительство 40 краболовных судов. Однако рост количества судов - не единственный путь удешевления продукции для потребителя. Другой немаловажной составляющей является энергетическая эффективность судов, под которой следует понимать получение максимального эффекта на единицу затраченных средств. Возможные варианты применения и сравнение способов оценки энергетической эффективности тепловых трансформаторов Одним из путей повышения энергетической эффективности судов является применение парокомпрессионных комбинированных тепловых трансформаторов (КТТ) - машин, одновременно вырабатывающих теплоту и холод. Наиболее очевидным вариантом применения данных машин является отопление и горячее водоснабжение на рефрижераторных судах. На современных судах система отопления реализуется при помощи электрообогрева или системы кондиционирования воздуха [4], при этом в обоих случаях получение данного эффекта сопровождается дополнительными затратами. В зависимости от типа судна и его назначения применение может быть самым разнообразным. К примеру, на судах перерабатывающего класса применение КТТ позволит сократить затраты на проведение процессов тепловой обработки, при этом поддерживая температурный режим в трюмах хранения. Ещё одним направлением применения КТТ является охлаждение главного двигателя по замкнутому контуру [5] с дальнейшим преобразованием теплоты для нужд потребителей высоких температур. Применение комбинированных тепловых трансформаторов актуально не только для строительства новых, но и для реконструкции старых судов. При выборе варианта технического решения ставится вопрос об оценке эффективности его применения. Проводя анализ литературы по теме оценки работы энергетических установок, в том числе и КТТ, нами было предложено несколько методов оценки энергетической эффективности тепловых трансформаторов (ТТ). Большинство из них строятся на базе эксергетического метода термодинамического анализа, основным критерием оценки энергетической эффективности в котором является эксергетический коэффициент полезного действия (КПД). Оценка энергетической эффективности зачастую проводится при помощи холодильного коэффициента ɛ и коэффициента преобразования μ. Однако автор [6] считает, что ɛ и μ не являются объективными критериями оценки энергетической эффективности ТТ, т. к. не учитывают необратимости, связанные со вторым началом термодинамики, и предлагает использование эксергетического метода как более совершенного способа оценки термодинамического совершенства. На основе эксергетического метода в [6] рассматривается энтропийный метод. Автор [7] предлагает использование эксергетического метода, рассчитываемого через температурную эксергетическую функцию [8]. Для сравнения точности и информативности способов оценки был проведён расчёт цикла ТТ с применением вышеописанных методик оценки с целью определения показателей энергетической эффективности работы цикла на разных холодильных агентах. Согласно требованиям [9], в качестве холодильных агентов на судне возможно использование агентов R134a, R22, R744 и R717. Расчётная температура окружающей среды для холодильных машин, согласно требованиям [9], не должна быть ниже +40 оС. Потребители искусственного холода судовых холодильных установок в большинстве имеют температуру, не превышающую +3 оС, что является крайней температурой для расчёта. Для анализа выбраны холодильные агенты R134a, R22, R717. Холодильный агент R744 не принят к рассмотрению, т. к. предполагаемая температура конденсации находится в субкритической области, что делает цикл холодильной машины отличным от других рассматриваемых. Для удобства сравнения результатов производится оценка полезного эффекта по холоду при помощи следующих методик: холодильного коэффициента (энергетического), эксергетического [8, 10], энтропийного [6], эксергетического с помощью температурной эксергетической функции [7, 8]. В качестве схемы принимается схема одноступенчатого ТТ без регенеративного теплообменника (рис. 1). В цикле работы ТТ приняты следующие допущения: процесс сжатия является адиабатическим процессом, не учитываются падения давления на всасывании и депрессия на нагнетании. Согласно [11] перегрев на всасывании для циклов без регенеративного теплообменника принят равным 10 К, переохлаждение жидкости после конденсатора до дроссельного вентиля - 3 К. Разность температур между температурой охлаждаемого объекта и температурой кипения холодильного агента принята равной 10 К, между температурой окружающей среды и температурой конденсации - 15 К. Анализ проводится в пределах рекомендованного функционирования одноступенчатой холодильной машины, соответствующего отношению давления конденсации Pk к давлению кипения P0: Pk / P0 ≤ 9. Для демонстрации тенденции изменения зависимости холодильного коэффициента ε при различных температурах её характеристика продлевается до ближайшего меньшего значения по температуре. Рис. 1. Расчётная схема одноступенчатой холодильной машины без регенеративного теплообменника: 1-2 - процесс сжатия холодильного агента в компрессоре; 2-3 - процесс конденсации холодильного агента в конденсаторе; 3-3′ - процесс переохлаждения жидкого холодильного агента после конденсатора; 3′-4 - процесс дросселирования холодильного агента с помощью дроссельного вентиля; 4-5 - процесс кипения холодильного агента в испарителе; 5-1 - процесс перегрева холодильного агента на всасывании На основе представленных выше данных произведён расчёт холодильного коэффициента при различных температурах кипения по методикам, приведённым в работах [6-8, 11], для выбранных холодильных агентов. Результаты расчёта для холодильного агента R22 представлены в виде зависимостей холодильного коэффициента ε от температуры кипения холодильного агента на рис. 2. Рис. 2. Зависимость холодильного коэффициента от температуры кипения холодильного агента R22 при температуре конденсации +55 оС На графике (рис. 2) зависимость εт соответствует изменению холодильного коэффициента ε для идеального обратного цикла Карно и характеризует общую тенденцию последующих зависимостей. Линия имеет нисходящую тенденцию, что не противоречит физическому смыслу и результатам ранних расчётов. Зависимость εэнерг. без потерь характеризует значение холодильного коэффициента ε, не учитывающего потери при передаче механической энергии к рабочему элементу и потери от преобразования механической энергии в тепловую. Зависимость имеет схожий характер, но меньшее значение в силу учёта необратимостей. Линия εэнерг отображает зависимость холодильного коэффициента ε, рассчитанного по энергетическому методу, с учётом потерь при передаче механической энергии к рабочему элементу и от преобразования механической энергии в тепловую. Зависимость имеет схожий характер изменения, при этом отличаясь количественно, в силу увеличения подводимой работы. Линия εЭТФ характеризует зависимость холодильного коэффициента, полученного в результате расчёта эксергии через эксергетическую температурную функцию. В силу методики расчёта значение холодильного коэффициента, полученного при расчёте по данному методу, численно практически совпадает с показателями холодильного коэффициента, рассчитанного по энергетическому методу. Зависимости εэкс и εэнтр характеризуют значения холодильного коэффициента, полученного в результате эксергетического и энтропийного анализов цикла соответственно и переведённого через эксергетическую температурную функцию. Данные зависимости имеют схожую тенденцию и характер изменения. Наклон характеристик, отличный от предыдущих характеристик, объясняется меньшим изменением количественного значения работы сжатия по адиабате согласно условиям расчёта и детальному учёту тепловых потерь в окружающую среду. Сравнение зависимостей холодильных коэффициентов ε от изменения температур кипения, полученных различными способами для рассматриваемых холодильных агентов, представлено на рис. 3. Рис. 3. Зависимость холодильного коэффициента от температуры кипения рассматриваемых холодильных агентов при температуре конденсации +55 оС Как представлено на диаграмме (рис. 3), зависимости холодильного коэффициента ɛ при расчёте по рассматриваемым методам имеют схожую тенденцию при различных температурах кипения. Зависимость εт не изменяется в зависимости от применяемого холодильного агента в силу особенностей расчёта. Зависимости εэнерг. без потерь, εэнерг и εЭТФ имеют различные численные значения в зависимости от холодильного агента, но схожие тенденции изменения, что представлено в работе [12]. Наиболее близким по численным значениям к εэнерг является εэкс, значение которого также изменяется в зависимости от используемого рабочего вещества. Выводы На основе полученных выше результатов можно сделать следующие выводы. 1. Рассматриваемые методы расчёта энергетической эффективности ТТ дают количественно схожий результат. 2. Тенденции к изменению зависимости холодильного коэффициента от температуры кипения при постоянной температуре конденсации имеют схожую тенденцию к изменению на всех рассматриваемых холодильных агентах. С ростом температуры кипения возрастает значение холодильного коэффициента. 3. В зависимости от термодинамических свойств холодильного агента изменяется количественное значение рассматриваемых характеристик на всех участках исследования. Наибольшее значение холодильного коэффициента получено для аммиака (R717).