Россия
ГРНТИ 45.01 Общие вопросы электротехники
ГРНТИ 55.42 Двигателестроение
ГРНТИ 55.45 Судостроение
ГРНТИ 73.34 Водный транспорт
ГРНТИ 44.31 Теплоэнергетика. Теплотехника
Рассматриваются транспортные системы, организованные по принципу «многие-ко-многим», т. е. системы, в которых грузопотоки из нескольких пунктов отправления должны быть доставлены в несколько пунктов назначения. Одной из форм повышения эффективности организации таких перевозок является концентрация грузопотоков на территории промышленно-отгрузочного терминала с последующей доставкой грузов в пункты назначения. В таких транспортных системах при организации транспортных потоков и управлении ими применяют три основные стратегии: каждый пункт отправления/получения может быть прикреплён только к одному терминалу, каждый пункт отправления/получения может взаимодействовать сразу с несколькими терминалами, каждый пункт отправления/получения может взаимодействовать с другими пунктами напрямую. Для каждой стратегии приведены соответствующие математические модели. Целевая функция в данных математических моделях минимизирует суммарные транспортные расходы, в которых стоимость транспортировки грузовой единицы между пунктами отправления/получения представляется в виде суммы стоимостей между пунктами отправления/получения и промышленно-отгрузочными терминалами, а также между самими промышленно-отгрузочными терминалами. Стоимость транспортировки грузовой единицы между промышленно-отгрузочными терминалами меньше, чем при транспортировке грузов между пунктами отправления/получения и промышленно-отгрузочными терминалами за счёт влияния эффекта масштаба. Проведены расчёты, определяющие влияние коэффициента эффекта масштаба на суммарные транспортные расходы по доставке грузов в зависимости от выбранной модели доставки. Расчёты проводились для 8, 10, и 12 пунктов отправления/получения с фиксированным количеством промышленно-отгрузочных терминалов, суммарные издержки рассчитывались при изменении коэффициента эффекта масштаба от 0 до 1 с интервалом 0,1. Количество груза и стоимость грузовой единицы задавались случайными значениями на определённом интервале. Рассматриваемые математические модели были рассчитаны в интегрированной среде разработки MATLAB с использованием оптимизационного пакета CPLEX.
распределение «многие-ко-многим», транспортная инфраструктура «ступица-и-спица», целочисленное программирование, эффект масштаба, промышленно-отгрузочный терминал
1. Изотов О. А. Морские порты России: современное состояние и перспективы развития / О. А. Изотов, А. В. Бологов, А. В. Кириченко, О. В. Соляков. М.: Моркнига, 2014. 321 с.
2. Новикова А. А. Анализ и перспективы развития арктических портов России / А. А. Новикова // Материалы 2-й межвуз. науч.-практ. конф. «Системный анализ и логистика на транспорте» (Санкт-Петербург, 10-11 апреля 2014 г.). СПб., 2014.
3. О Стратегии развития морской деятельности Российской Федерации до 2030 года: Распоряжение Правительства РФ от 8 декабря 2010 г. № 2205-р // Собрание законодательства Российской Федерации от 20 декабря 2010 г. № 51. Ст. 6954.
4. Проект «Стратегии развития морской портовой инфраструктуры России до 2030 года», одобрен Морской коллегией при Правительстве Российской Федерации 31 октября 2012 года // URL: http://www.rosmorport.ru/uploadify/988-f11a995b44861c9c2b1c7e0f502b433e.
5. Campbell J. F. Location and Allocation for Distribution Systems with Transshipments and Transportation Economies of Scale / J. F. Campbell // Annals of Operations Research. 1992. No. 40. P. 77-99.
6. Головцов Д. Л. Задача маршрутизации судов с различной грузоподьёмностью морского транспортного комплекса Арктической зоны России / Д. Л. Головцов // Вестн. Гос. ун-та мор. и реч. флота им. адм. С. О. Макарова. 2015. № 6 (34). С. 85-92.
7. O’Kelly M. E. The hub network design problem: a review and synthesis / M. E. O’Kelly, H. J. Miller // Journal of Transport Geography. 1994. No. 2. P. 31-40. DOIhttps://doi.org/10.1016/0966-6923(94)90032-9.
8. Skorin-Kapov D. Tight linear programming relaxations of uncapacitated p-hub median problems / D. Skorin-Kapov, J. Skorin-Kapov, M. E. O'Kelly // European Journal of Operational Research. 1996. No. 94. P. 582-593. DOIhttps://doi.org/10.1016/0377-2217(95)00100-X.
9. Campbell J. F. Integer programming formulations of discrete hub location problems / J. F Campbell // European Journal of Operational Research. 1994. No. 72. P. 387-405. DOIhttps://doi.org/10.1016/0377-2217(94)90318-2.
10. Aykin T. Networking Policies for Hub-and-Spoke Systems with Application to the Air Transportation System / T. Aykin // Transportation Science. 1995. No. 29 (3). P. 201-221. DOI:https://doi.org/10.1287/trsc.29.3.201.