Введение Перед производителями двигателей внутреннего сгорания (газотурбинных или поршневых), независимо от их конечного эксплуатационного назначения, всегда стоит триединая задача - обеспечение энергетической эффективности, топливной экономичности и экологической безопасности. Производными от этой основной триады являются задачи модернизации конструкции и технологии производства двигателей в аспекте их эволюционного развития, с тем чтобы, по возможности, не вносить кардинальных изменений в налаженный производственный процесс изготовления машин при максимально возможном сохранении действующего технологического оборудования, оснастки, инструментального обеспечения. В качестве примера рассмотрим задачу модернизации судовых малоразмерных дизелей типа Ч 8,5/11 и Ч 9,5/11 путём форсирования по среднему эффективному давлению посредством оснащения их системой газотурбинного наддува. Объект исследования Указанные двигатели - одни из самых архаичных типов машин в российском дизелестроении с точки зрения базовых эксплуатационных показателей [1], являющихся основой уже упомянутой триады. Тем не менее эти двигатели (в 2-, 4- и 6-цилиндровом исполнении) и энергетические комплексы на их базе довольно широко применяются на флоте и в промышленности в качестве главных двигателей маломерных судов, как вспомогательные в составе судовых дизель-генераторов и различных комбинированных агрегатов и как промышленные дизель-генераторы и дизель-электросварочные агрегаты [2]. Предприятие-производитель этих двигателей и установок на их базе ведёт работы как в направлении модернизации серийных дизелей, так и в направлении разработки принципиально нового двигателя типа 4ЧН 9,5/11 т. к. существует необходимость в повышении мощности производимых двигателей для увеличения скорости промысловых и разъездных судов и роста производительности дизель-генераторов. В Лаборатории проблем моторной энергетики при Астраханском государственном техническом университете (совместной с Институтом физики Дагестанского научного центра Российской академии наук (ДНЦ РАН), по согласованию с производителем (ОАО «Завод «Дагдизель»), был выполнен цикл исследовательских работ по форсированию дизеля 4Ч 9,5/11 (рис. 1) посредством газотурбинного наддува путём оснащения дизеля серийным турбокомпрессором ТК-6 со всеми необходимыми коммуникациями, встроенными в системы двигателя (охлаждение, смазка и др.). Рис. 1. Общий вид экспериментальной установки с дизелем 4Ч 9,5/11, модернизированным в дизель 4ЧН 9,5/11 Дизели типа Ч 8,5/11 выпускаются в модификации с вихрекамерным способом смесеобразования. Среди дизелей типа Ч 9,5/11 есть две модели с объёмно-плёночным смесеобразованием и камерой сгорания в поршне - дизель 5П2 (2Ч 9,5/11) под промышленный дизель-генератор и дизель-редукторная установка «Каспий-40» (4ЧСП 9,5/11) для работы на спасательных шлюпках. Оба способа смесеобразования имеют определённый ряд свойств, которые являются превалирующими при определении области применения той или иной модификации дизелей. Двигатели с камерой сгорания в поршне характеризуются хорошими пусковыми свойствами и сравнительно низкими значениями удельного расхода топлива, однако, ввиду более высокой скорости нарастания давления при сгорании, что характеризуется «жёсткостью» рабочего процесса, эти двигатели имеют существенные недостатки: высокий уровень шума и вибраций, дымность отработавших газов, малая стойкость многодырчатых форсунок на этих двигателях перед закоксовыванием сопловых отверстий распылителей, что снижает общую надёжность двигателей [3]. Вихрекамерные двигатели имеют большой удельный расход топлива, вследствие повышенного уровня тепловых потерь в охлаждение и высокого уровня аэродинамических потерь, связанных с перетеканием заряда из надпоршневого пространства в камеру сгорания и обратно. Этим же объясняются плохие пусковые свойства, когда для запуска двигателя, особенно в холодное время года, необходим дополнительный подогрев заряда с помощью свечей накаливания. Однако двигатели данной модификации характеризуются достаточно «мягким» рабочим процессом, сравнительно низким уровнем шума и вибраций и малой дымностью отработавших газов. Простые по конструкции штифтовые форсунки этих двигателей практически не подвержены закоксовыванию и не снижают общей надёжности двигателей. Результаты испытаний Испытаниям в дефорсированном и форсированном вариантах был подвергнут дизель 4Ч 9,5/11 с вихрекамерным смесеобразованием. Двигатель был обрудован системой для снятия и оцифровки индикаторной диаграммы производства ООО «Глобалтест» (рис. 2), а в цилиндровую втулку были установлены 24 хромель-копелевые термопары для определения температурного состояния цилиндра (по 6-ти поясам, в 2-х взаимно перпендикулярных направлениях - в плоскости качания шатуна и в плоскости оси коленчатого вала). Рис. 2. Разрез крышки цилиндров с форсункой и датчиком динамического давления на месте свечи накаливания Экспериментальная индикаторная диаграмма форсированного двигателя представлена на рис. 3. Рис. 3. Развёрнутая действительная индикаторная диаграмма двигателя ЧН 9,5/11 В табл. 1 и 2 приведены показатели рабочего процесса дизеля 4ЧН 9,5/11 при работе на режимах нагрузочной и винтовой характеристик. Номинальная эффективная мощность серийного судового вихрекамерного дизеля 4Ч 9,5/11 - 22 кВт при частоте вращения коленчатого вала 1500 мин-1 и удельном эффективном расходе топлива 0,279 кг/(кВт · ч). Эффективная мощность дизеля 4ЧН 9,5/11 составляет 27 кВт (n = 1500 мин-1) при удельном эффективном расходе топлива 0,24кг/(кВт · ч). Мощность в 27 кВт была принята по соображениям поддержания на приемлемом уровне внешних показателей двигателя - температуры; давления воды и масла; температуры отработавших газов; температуры цилиндровой втулки и клапанов, при его исходной серийной комплектации. Фактически дизель развивал мощность 30 кВт, но при этом стали проявляться дефекты, связанные с недостаточной жёсткостью элементов остова (прогибы днища крышки цилиндров), недостаточной производительностью насосов системы охлаждения, и другими факторами. Таблица 1 Показатели двигателя ЧН 9,5/11 на режимах нагрузочной характеристики Показатель Режим Холостой ход 25 % 50 % 75 % 100 % Эффективная мощность Ne, кВт 0 6,75 13,5 20,3 27 Среднее эффективное давление ре, МПа - 0,17 0,34 0,52 0,69 Часовой расход топлива Gт, кг/ч 1,46 2,39 3,56 4,75 6,5 Удельный эффективный расход топлива gе, кг/(кВт · ч) - 0,354 0,264 0,234 0,24 Таблица 2 Показатели двигателя ЧН 9,5/11 на режимах винтовой характеристики Показатель Режим 50 % 75 % 100 % Частота врашения n, об/мин 1 190 1 360 1 500 Эффективная мощность Ne, кВт 17 22,4 27 Среднее эффективное давление ре, МПа 0,549 0,633 0,687 Часовой расход топлива Gт, кг/ч 3,67 4,77 6,5 Удельный эффективный расход топлива gе, кг/(кВт · ч) 0,216 0,213 0,240 Результаты термометрирования рабочего цилиндра подтвердили данные проводимых ранее исследований для дизелей этого типа [4], которые показывали значительную неравномерность распределения температур как по периметру, так и по сечению цилиндра (рис. 4). Рис. 4. Вид распределения температур по высоте и периметру втулки: 1 - по зеркалу цилиндра форсированного двигателя; 2 - по зеркалу цилиндра серийного двигателя При этом максимальные значения температуры отмечены со стороны вихревой камеры сгорания (в плоскости качания шатуна 262 °С у форсированного дизеля и 215 °С у серийного дизеля), тогда как с остальных трёх сторон показания термопар были достаточно близки - 228÷232 °С у форсированного дизеля и 199÷202 °С у серийного дизеля. Температура измерялась посредством мультиметра MY62 класса точности 0,5. Такое распределение температур в цилиндре свидетельствует о значительном искажении геометрических параметров цилиндровой втулки и сопряжённых с ней деталей в виде отклонений от правильной цилиндрической формы в силу температурных деформаций. Это сказывается на качестве протекания рабочего процесса в худшую сторону (прорыв газов в заколечное пространство), увеличении износов сопрягаемых деталей и снижении ресурса. Полную картину теплонагруженного состояния втулки с учётом теплоты, выделяемой в результате трения в цилиндропоршневой группе, может дать эпюра распределения тепловых потоков по цилиндру, которая может быть получена в результате решения математической модели теплопередачи через втулку. В основу модели могут быть положены дифференциальные уравнения теплопроводности через цилиндрическую стенку (уравнения Лапласа), в виде объёмной задачи по всему телу втулки: ∂2T/∂r2 + 1/r(∂T/∂r) + 1/r2(∂2T/∂φ2) + ∂2T/∂z2 = 0, или в виде плоской задачи для каждого из 4-х сечений, с последующим сшиванием результатов по границам, при назначении соответствующих геометрических и граничных условий и теплофизических характеристик [5]: ∂2T/∂r2 +1/r(∂T/∂r) + ∂2T/∂z2 = 0, где Т - температура, К (°С); r, z, φ - координатные оси по радиусу, оси и углу поворота по азимуту окружности втулки. На основе результатов решения математической модели можно будет определить схему и конструкцию системы охлаждения двигателя, компенсирующую неравномерность имеющегося распределения температуры. Пусковые свойства и термодинамический анализ Недостаточные пусковые свойства вихрекамерного дизеля при его запуске без применения свечей накаливания и сравнительно высокий удельный расход топлива объясняются частично значительными тепловыми потерями через стенку вихревой камеры сгорания в систему охлаждения (да ещё в условиях термосифонного охлаждения серийных дизелей, когда теплоноситель из теплообменника направляется сразу в крышку цилиндров) (см. рис. 2). Пусковые свойства могут быть улучшены путём реализации предложения, сделанного в [6]. Суть его в том, что вихревая камера экранируется от полости охлаждения теплоизолирующим экраном (рис. 5), подобно тому, как это сделано в [7]. Рис. 5. Схема вихревой камеры сгорания: 1 - теплоизолирующий экран Помимо конструкционных и технологических задач, возникающих и решаемых в процессе модернизации тепловых двигателей, необходим термодинамический анализ протекания изменившихся процессов в рабочем объёме. Количество теплоты, полученной рабочим телом, зависит от условий проведения процесса. На практике рассматривают процессы с постоянным объемом (изохорные, проходящие при постоянном объеме) или процессы с постоянным давлением (изобарные, проходящие при изменяющемся объёме). Если процесс изохорный, то тело не совершает механической работы (dV = 0), из этого следует, что вся получаемая теплота идет на изменение энергии: δQ = dU. На рис. 6 показан теоретический термодинамический комбинированный цикл поршневого двигателя (цикл Тринклера - Сабатэ) в координатах р - V и T - S. На этом цикле основано действие всех реальных циклов современных дизельных двигателей. В этом цикле к начинающему формироваться рабочему телу теплота сначала подводится по изохоре (V - const) - участок 2-3, при этом вся получаемая теплота идёт на увеличение внутренней энергии - δQ = dU. На следующем участке, в связи с началом движения поршня и соответствующим увеличением объёма V, процесс подвода теплоты продолжается, но уже по изобаре (р - const) на участке 3-4. Рис. 6. Теоретический термодинамический цикл Тринклера - Сабатэ Если процесс изобарный (р - const), то рассмотренное соотношение dQ = dU + рdV можно переписать как дифференциал dQ = d(U + pV) некоторой функции H = U + pV, которая, по физическому смыслу, является теплосодержанием, а в термодинамике называется энтальпией. Её физический смысл в том, что при постоянном давлении изменение энтальпии (теплосодержания) равно количеству теплоты, получаемому телом - (δQ)V, S = dH, и идет: - на изменение внутренней энергии dU (через изменение температуры тела); - на совершение работы над внешней средой рdV (через изменение объема). Полный дифференциал энтальпии для произвольного процесса будет иметь вид dH = dU + (рdV + Vdр) = TdS - рdV + рdV + Vdр = TdS + Vdр. Отсюда следует, что для процесса, проводимого при постоянном давлении р и энтропии S, количество получаемой теплоты dH - полный дифференциал. Следовательно, сама функция Н (энтальпия) - искомый термодинамический потенциал относительно переменных р и S. Тогда для увеличения работоспособности дизельных двигателей необходимо максимально использовать теплосодержание рабочего тела Н при переменных р и S за счёт увеличения объёма V (за счёт увеличения хода поршня) и суммарной температуры газа Т. Итак, было установлено, что для повышения энергетической эффективности тепловой машины, в частности дизельного двигателя, необходимо увеличивать внутреннюю энергию рабочего тела (за счёт повышения температуры) и количество работы (за счёт увеличения объёма). Вследствие этого современные судовые среднеоборотные двигатели, при наличии возможности увеличения высоты по габаритам машинного отделения, имеют тенденцию к длиноходности т. е. к увеличению хода поршня [8, 9]. Долгое время без должного внимания оставался внутрицилиндровый температурный фактор, если не считать определения максимальной температуры цикла при тепловом расчёте двигателя - tz или Тz (ºC или К). Однако суммарное значение температуры образовавшегося рабочего тела за рабочий цикл определяет его теплосодержание и, следовательно, работоспособность. График индикаторной диаграммы и график цикловых температур, полученные по данным испытаний дизеля 4ЧН 9,5/11, представлены на рис. 3 и 7 соответственно. Индикаторные диаграммы являются основой для построения графиков температур графическим методом по В. А. Вашейдту [10] либо по уравнению состояния идеального газа Клапейрона - Менделеева: pV = GRT, (1) где р - давление, МПа; V - объём, м3; R - универсальная газовая постоянная, Дж/(моль · К); Т - температура, К. Рис. 7. График среднецикловых температур Суммарное значение температуры рабочего тела (газа) за цикл, K, можно определить по формуле ТΣг = φТ(V)dV, тогда средняя индикаторная температура рабочего тела за цикл, K, определится как Тi = ТΣг/Vh, К, где Vh - рабочий объём цилиндра, м3. Условимся, что средняя индикаторная температура цикла - это условная постоянная температура рабочего тела, определяющая его теплосодержание (энтальпию), а следовательно, работоспособность в течение всего цикла. Графически Тi можно представить как высоту прямоугольника, площадь которого равна площади замкнутой температурной кривой, а основание равно ходу поршня. В этом случае численно средняя индикаторная температура за цикл ТΣг, K · м3, будет равна произведению ТΣг = Тi Vh, Рассмотрим полученную размерность К · м3. Для этого из уравнения (1) выделим интересующее нас произведение, а именно VТ. Получим: VT = GRT 2/p. Размерность данного выражении будет Дж · К · м2/Н или Дж · К/Па. Разделив размерность ТΣг на Vh , получим К. Таким образом, термодинамический анализ состояния рабочего тела в цилиндре двигателя, оценка средней температуры газа за цикл индикаторной температуры позволяют оценить перспективы работоспособности газа и, как следствие, прогнозировать возможность повышения эффективности работы машины с помощью различных конструктивных новаций. В этом плане температурные показатели ТΣг и Тi имеют приоритет перед силовыми - рz и рi, которые только фиксируют текущее состояние рабочего тела и не дают возможности оценить скрытую перспективу роста работоспособности газа. Заключение Подводя итоги вышеизложенного, можно сказать, что задача модернизации двигателей внутреннего сгорания заключается в последовательном, а часто и в совместном грамотном и ответственном решении целого ряда подзадач конструкторского, технологического и организационно-экономического плана. Результатом такого подхода может стать двигатель с высокими эксплуатационными показателями, максимально адаптированный к условиям действующего производства и поэтому вполне конкурентный на рынке машин своего класса.