ГРНТИ 45.01 Общие вопросы электротехники
ГРНТИ 55.42 Двигателестроение
ГРНТИ 55.45 Судостроение
ГРНТИ 73.34 Водный транспорт
ГРНТИ 44.31 Теплоэнергетика. Теплотехника
Известные методы расчета остойчивости судов на воздушной подушке отличаются громоздкостью и недостаточной точностью, вследствие чего их применение для практических расчетов затруднительно. В предлагаемом методе расчета амфибийного судна на воздушной подушке (АСВП) с гибким ограждением (ГО) баллонетного типа используется классическая теория остойчивости, основанная на теории Эйлера о равнообъемных наклонениях. Выводы основаны на известном способе учета влияния свободной поверхности жидкости на остойчивость. Показано, что при превышении ширины конструктивной ватерлинии над шириной свободной поверхности во впадине под воздушной подушкой метацентрический радиус будет иметь положительное значение. Принят ряд допущений для расчетной схемы судна: баллоны ГО имеют круговую форму; не учитывается воздушный зазор между баллоном ГО и поверхностью воды при истечении воздуха. Рассматривается плоская задача, где длина судна в продольном направлении равна 1. Получены расчетные формулы для определения начального метацентрического радиуса. Поскольку непосредственный анализ полученных зависимостей весьма сложен, последние переведены в безразмерный вид. На основе результатов расчетов построен график зависимости начального метацентрического радиуса от относительного радиуса баллонов нижнего яруса и относительного расстояния между баллонами. Дан пример использования результатов для оценки начальной остойчивости реального АСВП с ГО баллонетного типа проекта «Галф» (разработка и производство компании ЗАО «Н Ситек»). Анализ показал, что центр тяжести судна может занимать достаточно высокое положение и располагается значительно ниже, что способствует противостоянию динамическому кренящему моменту.
амфибийное судно, баллонеты, воздушная подушка, гибкое ограждение, начальная остойчивость, метацентрическая высота, центр тяжести
1. Колызаев Б. А. Особенности проектирования судов с новыми принципами поддержания / Б. А. Колызаев, А. И. Косоруков, В. А. Литвиненко, Г. И. Попов. Л.: Судостроение, 1974. 324 с.
2. Смирнов С. А. Суда на воздушной подушке скегового типа / С. А. Смирнов. Л.: Судостроение, 1983. 216 с.
3. Ваганов А. М. Проектирование скоростных судов / А. М. Ваганов. Л.: Судостроение, 1978. 279 с.
4. Зуев В. А. Некоторые вопросы проектирования ледокольных приставок на воздушной подушке / В. А. Зуев, Ю. А. Двойченко, С. Г. Мохонько, Г. М. Перелыгина, А. В. Саватеев // Теория и прочность ледокольного корабля. Горьков. политехн. ин-т им. А. А. Жданова, 1982. С. 41-48.
5. Yun L. Theory and design air cushion craft / L.Yun, A. Bliault. London: Arnold Publ., 2000. 647 p.
6. Семенов-Тянь-Шанский В. В. Статика и динамика корабля / В. В. Семенов-Тянь-Шанский // Теория плавучести, остойчивости и спуска. Л.: Судпромгиз, 1960. 576 с.
7. Бронштейн И. Н. Справочник по математике для инженеров и учащихся втузов / И. Н. Бронштейн, К. А. Семендяев. М.: Наука, 1980. 975 с.
8. URL: www.nsitek.ru (дата обращения: 10.07.2014).