Russian Federation
Russian Federation
Energy consumption factors in the systems of cooling, heating, air conditioning and lighting in a building have a significant impact on the energy costs. Intelligent energy control methods help modernize the engineering systems of buildings, while using artificial neural networks and fuzzy logic for minimizing energy consumption is espe-cially effective in the operation of buildings. To control energy consumption there was proposed the Mamdani fuzzy inference system, selected membership functions of Gaussian, triangular and trapezoidal shapes in the course of the research, implemented the types and functions of inputs and outputs for engineering systems control subsystems in software. According to the input and output parameters, the following systems were designed: lighting, smart window, HVAC; fuzzy inference tables were built, graphical data analysis was performed. The proposed control solutions for the implementation of fuzzy rules based on linguistic variables make it possible to adapt the building management system to environmental conditions and prevent excessive energy consumption. The study substantiates the choice of energy-consuming parts of the building; when forming control actions, fuzzy logic rules are applied in functional ranges. The fuzzy inference system was shown to generate the solutions in accordance with changing input data, integrated control is implemented, the responses of lighting, heating, ventilation and air conditioning systems are analyzed depending on the input membership function. It is proposed to control the intensity of ambient light using motion sensors, including optical ones. It is shown that the results obtained make it possible to achieve a reduction in lighting energy consumption by 15 - 25%, maximum use of external light, ensuring a comfortable temperature regime, and also lead to implementing the coordinated and integrated control functions
fuzzy inference system, power consumption, membership function, temperature control, light mode, input data, smart window, lighting
1. Sivakumar R. V., Kamakshi P. V., Jiacun Wang J., Reddy K. T. V. Soft Computing and Signal Processing // Proceedings of 3rd ICSCSP 2020. Springer, 2021. V. 1. DOIhttps://doi.org/10.1007/978-981-15-2475-2.
2. Singh I., Michaelowa A. Indian Urban Building Sec-tor: CDM Potential through Engergy Efficiency in Electricity Consumption // SSRN Electronic Journal. August 2004. DOIhttps://doi.org/10.2139/ssrn.576001.
3. Panjaitan S. D., Hartoyo A. Lighting Control System in Buildings based on Fuzzy Logic // Telkomnika. December 2011. V. 9. N. 3. P. 423-432.
4. Cziker A., Chindris M., Miron A. Fuzzy controller for indoor lighting system with daylighting contribution // URL: https://www.emo.org.tr/ekler/1e7fea7f69ef687_ek.pdf (data obrascheniya: 20.10.2021).
5. Doulos L., Tsangrassoulis A., Topalis F. V. Evaluation of Lighting Controls in Office Buildings // 6th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, Cairo, Egypt, Dec. 29-31, 2007. P. 69-77. URL: https://www.researchgate.net/publication/267699771_Evaluation_of_lighting_controls_in_office_buildings (data obrascheniya: 20.10.2021).
6. Jiang W., Jiang Y., Ren H. Analysis and Prospect of Control System for Stage Lighting // Conference: Image and Signal Processing (CISP), 2010 3rd International Congress onVolume: 8 Yantai, 2010. November 2010. SourceIEEE Xplore. P. 3923-3928. DOIhttps://doi.org/10.1109/CISP.2010.5647570.
7. Yong Y., Zuojun B., Chunzheng Z., Lei W. Study on the Mesopic Vision Theory used in Road Tunnel Lighting Measurement // 3rd IEEE Conference on Measuring Technology and Mechatronics Automation (ICMTMA) (Sanghai). January 2011. P. 565-567. DOIhttps://doi.org/10.1109/ICMTMA.2011.711.
8. Cheng C. A., Cheng H. L., Lin K. J., Chu K. L., Yen C. H. A Digitally Wireless Dimmable Lighting System for Two-Are Fluorescent Lamps // Technical Conference (TENCON) IEEE Region 10 (Fukuoka). 2010. P. 2173-2178.
9. Yan W., Hui S. Y. R. Dimming Characteristics of Large-scale High-Intensity-Discharge (HID) Lamp Lighting Networks using a Central Energy-Saving System // IEEE Industry applications conference 41st IAS Annual meeting (Tampa). 2006. P. 1090-1098.
10. Newsham G. R., Aries M. B. C., Mancini S., Faye G. Individual control of electric lighting in a daylit space // Lighting Research and Technology. 2008. N. 40 (1). P. 25-41.
11. Rea M. S. IESNA Lighting Handbook. NY: Illumi-nating Engineering Society of North America, 2000. 1037 p.
12. Jin M., Ho M. LabVIEW-based Fuzzy Controller Design of a Lighting Control System // Journal of marine science and technology. 2009. N. 17 (2). P. 116-121.
13. Cziker A., Chindris M., Miron A. Implementation of Fuzzy Logic in Daylighting Control // IEEE Conference on Intelligent Engineering Systems (INES), Budapest, 2007. P. 195-200.
14. Argiriou A. A., Bellas Velidis I., Balaras C. A. De-velopment of a neural network heating controller for solar buildings // Neural Networks. 2000. N. 13. P. 811-820.
15. Moon J., Jung W., Kim S. K. Application of ANN (Artificial Neural Network) in residential thermal control // IBPSA. Proceeding of Eleventh International IBPSA Con-ference. July 27-30, Scotland, 2009. P. 64-71.
16. Dombaycı Ö. A. The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli-Turkey // Advances in Engineering Software. 2010. N. 41 (2). P. 141-147.
17. Jovanovic R., Aleksandra Z., Sretenovic A., Zivkovic B. D. Ensemble of various neural networks for prediction of heating energy consumption // Energy and Buildings. 2015. N. 94. P. 189-199.
18. Saglam S., Oral B. Modern Lighting Sources and Controls for Energy Efficient Lighting and a Smart Control Algorithm Application // WSEAS transactions on systems. 2010. Iss. 10. V. 9. P. 1098-1108,
19. Tang J. A. Dynamic System Model Validation Scheme with Fuzzy Logic Techniques // In Proceedings of the 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems (Geneva, 10-14 Oct 2005). 2005. P. 45-51.
20. Othman M. F., Othman S. M. Fuzzy Logic Control for Non-Linear Car Air Conditioning // Elektrika. 2006. V. 8. N. 2. P. 38-45.
21. Hanamane M. D., Mudholkar R. R., Jadhav B. T., Sawant S. R. Implementation of Fuzzy Temperature control Using Microprocessor // Journal of Scientific and Industrial Research. 2006. V. 65. Iss. 3. P. 142-147.
22. Mongkolwongrojn M., Sarawit V. Implementation of Fuzzy Logic Control for Air Conditioning Systems // Proceedings of the 8th International Conference on Control, Automation and Systems. 2005. P. 313-321.
23. Abduljabar Z. A. Simulation and Design of Fuzzy Temperature Control for Heating and Cooling Water System // International Journal of Advancements in Computing Technology. 2011. P. 41-48.
24. Wang C., Lin C., Lee B., Liu C. J., Su C. Adaptive Two-Stage Fuzzy Temperature Control for an Electro heat System // International Journal of Fuzzy Systems. 2009. V. 11. N. 1. P. 59-66.
25. Malhotra R., Singh N., Singh Y. An Efficient Fuzzy-GA Flow Control of Turbine Compressor System: A Process Control Case Study // International Journal of Advancements in Computing Technology. 2010. V. 2. N. 4. P. 128-139.
26. Larionov V. G., Treyman M. G. Intellektual'noe upravlenie energopotrebleniem na vodoprovodnyh stanciyah na primere filiala «Vodosnabzhenie» GUP «Vodokanal Sankt-Peterburga» // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Ekonomika. 2020. № 4. S. 7-14.
27. Hassanniakalager A., Sermpinis G., Stasinakis C., Verousis Th. A conditional fuzzy inference approach in forecasting // Production, Manufacturing, Transportation and Logistics, European Journal of Operational Research. 2020. V. 283. Iss. 1. P. 196-216.
28. Abbasipayam S., Mokrova N. V. Ispol'zovanie neyronnoy seti perseptrona dlya opredeleniya parametrov promyshlennoy sistemy // Inzhenerno-stroitel'nyy vestnik Prikaspiya. 2020. № 4 (34). S. 106-111.