Russian Federation
The reservoirs of the K. Satpayev canal are the important fishery water bodies in the Central Kazakhstan. Some of these reservoirs are inhabited by tench, a fish species relatively widely represented in other water systems of the region. In the reservoirs of the canal this species is not the main commercial one but it has a fairly high commercial value due to its popularity with consumers. As part of the research, the growth indicators of Tinca tinca from 4 reservoirs were evaluated, and the data on its growth from 3 more reservoirs were also provided. These samples differ in efficiency and growth rates. It has been found that there is no sexual or generation variability. Growth rates in successive fish generations strongly correlate with each other, which may indirectly indicate the stability of living conditions. The R. Lee’s phenomenon was not marked. In this regard, the calculation of variables of the von Bertalanffy growth equation was carried out without additional data processing. The highest rates of linear growth were characteristic of Tinca tinca from the reservoir of HS No. 9. However, the effectiveness of its growth scheme was the lowest. Population with a longer age range from the reservoir HS No. 3 did not have high linear growth rates, but its growth efficiency was higher. In this case, it is obvious that any assessment of growth will be relative and depend on the goals set for it. In the reservoirs of the canal there are more or less similar conditions for tench populations living due to the specifics of its functioning. The main limiting factor for the growth rate, in our opinion, will be abundance of the species in the reservoir and related trophic factors with a certain influence of withdrawal (fishing, predators).
the K. Satpayev Canal, reservoir, tench, population, growth, age, linear-weight ratio, weight, increase
1. Asylbekova S. Zh., Kraynyuk V. N. Lin' Tinca tinca (l., 1758) vodohranilisch kanala im. K. Satpaeva // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Rybnoe hozyaystvo. 2013. № 1. S. 29-34.
2. Serov N. P. Ichthyofauna of the Kamysh-Samara and Kushum lakes // Collection of works on ichthyology and hydrobiology. Alma-Ata: Publishing House of the Academy of Sciences of the Kazakh SSR, 1959. Iss. 2. Pp. 152-175.
3. Dushin A. I., Voinova T. V. Fish fauna of the lakes of the Mordovian Reserve // Works of the Mordovian State Nature Reserve named after P. G. Smidovich. 1970. № 5. P. 171-187.
4. Mitrofanov V. P., Dukravets G. M., Sidorova A. F., Soloninova L. N., Markova E. L., Mitrofanov I. V., Bashunova N. N. Kazakhstan Fish. Alma-Ata: Science, 1987. V. 2. 200 p.
5. Dyatlov M. A. Fish of Lake Ladoga. Petrozavodsk: Publishing house of KarSC RAS, 2002. 281 p.
6. Gerassimov Yu. V., Zelenetsky N. M. Tench // Fish of the Rybinsk reservoir: population dynamics and ecology. Yaroslavl: Filigree, 2015. P. 296-299.
7. Krainyuk V. N. Back calculation of the growth of tench Tinca tinca (L., 1758) (Cyprinidae) from two reservoirs of Karaganda region // Fish farming and fisheries. 2020. N. 11. P. 20-31. DOIhttps://doi.org/10.33920/sel-09-2011-02.
8. Weatherley A. H. Some features of the biology of the tench Tinca tinca (Linnaeus) in Tasmania // J. Anim. Ecol. 1959. V. 28. N. 1. P. 73-87.
9. Kennedy M., Fitzmaurice P. The Biology of the Tench Tinca tinca (L.) in Irish Waters // Proc. Royal Irish Acad. Section B: Biological, Geological, and Chemical Science. 1970. V. 69. P. 31-82.
10. O'Maoileidigh N., Bracken J. J. Biology of tench, Tinca tinca (L.), in an Irish lakes // Aquaculture and Fisheries Management. 1989. V. 20. P. 199-209.
11. Altındağ A., Yiğit S., Ahiska S., Özkurt Ş. The Growth Features of Tench (Tinca tinca L., 1758) in the Kesikköprü Dam Lake // Tr. J. of Zoology. 1998. N. 22. P. 311-318.
12. Benzer S. S., Gül A., Yilmaz M. Growth properties of tench (Tinca tinca L., 1758) living in Kapulukaya dam lake // Eylül. 2010. V. 18. N. 3. P. 839-848.
13. Pompei L., Franchi E., Giannetto D., Lorenzoni M. Growth and reproductive properties of Tench, Tinca tinca Linnaeus, 1758, in Trasimeno Lake (Umbria, Italy) // Knowl. Managt. Aquatic Ecosyst. 2012. N. 406. 7 p. DOI:https://doi.org/10.1051/kmae/2012024.
14. Pravdin N. F. Fish Study Guide. M.: Food industry, 1966. 376 p.
15. Sini A. I., Meunier F. J., Francillon-Vieillot H. Comparison of scales, opercular bones, and vertebrae to determinate age and population structure in tench, Tinca tinca (L., 1758) (Piscers; Teleostei) // Israel Journal of Zoology. 1999. V. 43. N. 4. P. 453-465. DOI:https://doi.org/10.1080/00212210.1999.10689011.
16. Francis R. Back-calculation of fish length: a critical review // J. Fish. Biol. 1990. V. 36. N. 6. P. 883-902.
17. Dgebuadze Yu. Yu. Ecological patterns of fish growth variability. M.: Science, 2001. 276 p.
18. Mina M. V., Klevezal G. A. Growth of animals. M.: Science, 1976. 291 p.
19. Ilmast N. V. Introduction to ichthyology. Petrozavodsk: Publishing house of KarSC RAS, 2005. 148 p.
20. Milovanov A. I. Commercial ichthyology. Lecture notes. Kerch: FSBEE OF HE “KSMTU”, 2019. 109 p.
21. Pauly D., Munro J. L. Once more on the comparison of growth in fish and invertebrates // Fishbyte. 1984. N. 2. P. 21.
22. Vaughan D. S., Burton M. L. Estimation of von Bertalanffy growth parameters in the presence of size-selective mortality: A simulated example with Red Grouper // Transac. Amer. Fish. Soc. 1994. V. 123. N. 1. P. 1-8. DOI:https://doi.org/10.1577/1548-8659(1994) 123<0001: EOVBGP>2.3.CO;2
23. Hilborn R., Walters J. C. Quantitative fisheries stock assessment, choice, dynamics and uncertainty. New York: Chapman and Hall, 1992. 570 p.
24. Froese R. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations // J. Appl. Ichthyol. 2006. V. 22. N. 4. P. 241-253.
25. Kotlyar O. A. Methods of fisheries research (ichthyology). M.: Ekon-inform, 2013. 222 p.
26. Plokhinsky N. A. Biometrics. M.: Moscow State University, 1970. 367 p.
27. Korosov A. V., Gorbach V. V. Computer processing of biological data. Petrozavodsk: Publishing house of PSU, 2007. 76 p.
28. Byul A., Cefel P. SSPS: The Art of information pro-cessing. Saint-Petersburg: Diasoftyup, 2005. 608 p.
29. Henderson B. A., Collins N., Morgan G. E., Vaillancourt A. Sexual size dimorphism of walleye (Stizostedion vitreum vitreum) // Can. J. Fish. Aquat. Sci. 2003. V. 60. N. 11. P. 1345-1352. DOI:https://doi.org/10.1139/f03-115.
30. Marshall M. D., Maceina M. J., Holley M. P. Age and Growth Variability between Sexes of Three Catfish Species in Lake Wilson, Alabama // North American Journal of Fisheries Management. 2009. V. 29. Iss. 5. P. 1283-1286. DOI:https://doi.org/10.1577/M08-258.1.
31. Sandip B., Toshiharu I., Takeshi M., Masato H., Gersende M., Chiemi M. Differences between male and female growth and sexual maturation in tilapia (Oreochromis mossambicus) // Kathmandu Univer. Journ. of Sci., Engineer. and Technol. 2012. V. 8. N. 11. P. 57-65.
32. Nikolsky G. V. Dynamics of commercial fish populations. M.: Science, 1965. 382 p.
33. Folkvord A., Jørgensen C., Korsbrekke K., Nash R. D. M., Nilsen T., Skjæraasen J. E. Trade-offs between growth and reproduction in wild Atlantic cod // Can. J. Fish. Aquat. Sci. 2014. V. 71. Iss. 7. P. 1106-1112. DOI: dx.doi.org/10.1139/cjfas-2013-0600.
34. Nakayama S., Rapp T., Arlinghaus R. Fast-slow life history is correlated with individual differences in movements and prey selection in an aquatic predator in the wild // J. Anim Ecol. 2017. N. 86. P. 192-201. DOI: https://doi.org/10.1111/1365-2656.12603.
35. Barneche D. R., Robertson D. R., White C. R., Marshall D. J. Fish reproductive-energy output increases disproportionately with body size // Science. 2018. V. 360. Iss. 6389. P. 642-645. DOI:https://doi.org/10.1126/science.aao6868.
36. Kudersky L. A. Dynamics of herds of commercial fish of inland reservoirs. M.: Science, 1991. 151 p.