Russian Federation
Russian Federation
Russian Federation
The article presents an algorithm and a methodology of ranking a group of raster images by using the criterion of their expected quality. Ranking refers to the evaluation of a sample of bitmap images in a descending order of their quality, the image quality assessment being performed on the basis of a number of statistical parameters, such as coefficients of variation, determination, rank correlation index, as well as errors (absolute maximum error, average error, average quadratic error). The differences between the images are based on converting a full-color RGB image into HSV, Lab, NTSC, XYZ, YCbCr color models, which are represented as one-dimensional pixel ma-trices. The colour model RGB is taken as a reference. In relation to it, the proposed statistical char-acteristics of other color models are compared, any object of each color model being compared with the base model - an RGB image. Based on this comparison, all images of a given group are analyzed independently of each other. Image quality assessment is performed in a module that can be used to cycle through multiple images and is represented in numerical form as a real number. One of the module blocks calculates the statistical parameters between each color model and the base RGB model. After receiving the values of the quality scores they are ranked according to their values. As a result, an image with a higher or lower scene quality can be determined. Images with blocking artifacts, noisy images of the salt & pepper type, and images with strobe effects artifacts were considered as test images.
color spaces, colour models, bitmap images, coefficients of variation, determinations, rank correlation, maximum, average, mean-square errors
1. Aleksandrov E. E., Savkina A. V. Komp'yuternaya grafika: ucheb. posobie. Saransk: Izd-vo Mordov. un-ta, 2005. 88 s.
2. Demin A. Yu. Osnovy komp'yuternoy grafiki: ucheb. posobie. Tomsk: Izd-vo Tom. politehn. un-ta, 2011. 191 s.
3. Gonsales R., Vuds R. Cifrovaya obrabotka izobrazheniy. M.: Tehnosfera, 2012. 1104 s.
4. Nushtaeva A. V., Savkina A. V. Laboratornyy praktikum po komp'yuternoy grafike: ucheb. posobie. Saransk: Izd-vo Mordov. un-ta, 2018. 132 s.
5. Nikulin E. A. Komp'yuternaya grafika. Modeli i algoritmy: ucheb. posobie. SPb.: Lan', 2018. 708 c.
6. Matveev D. V., Sedov A. G. i dr. Ocenka kachestva cifrovyh izobrazheniy i videodannyh: ucheb.-metod. posobie. Yaroslavl': Izd-vo YarGU, 2018. 76 s.
7. Erofeev V. T., Afonin V. V., Kasimkina M. M. Vliyanie plastifikatorov na izmenenie cvetnosti LKM pod vozdeystviem agressivnyh sred // Lakokrasochnye materialy i ih primenenie. 2011. № 6. S. 38-41.
8. Cherushova N. V., Mitina E. A., Kasimkina M. M., Afonin V. V., Erofeev V. T. Ocenka izmeneniya dekorativnyh svoystv lakokrasochnyh materialov pod vozdeystviem ekspluatacionnyh faktorov // Vestn. Mordov. un-ta. 2008. № 4. S. 124-127.
9. Zotkina M. M., Zotkin V. B., Emel'yanov D. V., Zaharova E. A., Cherushova N. V., Erofeeva I. V., Afonin V. V. Izmenenie dekorativnyh svoystv pigmentirovannyh cementnyh kompozitov v rezul'tate vozdeystviya biologicheskih agressivnyh sred // Aktual'nye voprosy arhitektury i stroitel'stva: materialy XIV Mezhdunar. nauch.-tehn. konf. (Saransk, 23-25 dekabrya 2015 g.). Otv. red. V. T. Erofeev. Saransk: Izd-vo Mordov. un-ta, 2015. S. 221-224.
10. Afonin V. V., Erofeeva I. V., Zotkina M. M., Emel'yanov D. V., Podzhivotov N. Yu. Etalonnaya ocenka kachestva izobrazheniy kompozicionnyh materialov, podverzhennyh vozdeystviyu polozhitel'nyh i otricatel'nyh temperatur // Vestn. Mosk. gos. stroit. un-ta. 2019. T. 14. Vyp. 1. S. 83-93. DOI:https://doi.org/10.22227/1997-0935.2019.1.83-93.
11. Babkin P. S., Pavlov Yu. N. Analiz i sravnenie ob'ektivnyh metodov ocenki kachestva izobrazhe-niy // Nauka i obrazovanie: nauch. izd. MGTU im. N. E. Baumana. 2014. № 9. S. 203-215.
12. Al'-Askari M. A., Fedosin S. A. Nereferensnaya ocenka strob-effektov na rastrovyh izobrazhe-niyah s dvoynoy optimizaciey parametra algoritma Kenni // Estestvennye i tehnicheskie nauki. 2018. № 11 (125). S. 424-428.
13. Afonin V. V., Savkina A. V., Nikulin V. V. Ocenka ustoychivosti strukturno-yarkostnyh svoystv pri cifrovoy obrabotke izobrazheniy // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Upravlenie, vychisli-tel'naya tehnika i informatika. 2021. № 2. S. 39-46. DOI:https://doi.org/10.24143/2072-9502-2021-2-39-46.
14. Yeganeh H., Wang Z. Objective quality assessment of tone-mapped images // IEEE Transactions on Im-age Processing. 2013. V. 22. Iss. 2. P. 657-667. DOI:https://doi.org/10.1109/tip.2012.2221725.
15. Mittal A., Soundararajan R., Bovik A. C. Making a Completely Blind Image Quality Analyzer // IEEE Signal processing Letters. March 2013. V. 22. N. 3. P. 209-212.
16. Mittal A., Moorthy A. K., Bovik A. C. No-reference Image Quality Assessment in the Spatial Domain // IEEE Transactions on Image Processing. 2012. N. 21 (12). P. 4695-4708.
17. Mittal A., Moorthy A. K., Bovik A. C. Referenceless image spatial quality evaluation engine // Proc. 45th Asilomar Conf. Signals Syst. Comput. Nov. 2011. P. 1-5.
18. Gu K., Zhou J., Zhai G., Lin W., Bovik A. C. No-reference quality assessment of screen content pictures // IEEE Transactions on Image Processing. August 2017. V. 26. N. 8. P. 4005-4017.
19. Pambrun J. F., Noumeir R. Limitations of the SSIM quality metric in the context of diagnostic imaging // Proc. of the IEEE International Conference on Image Processing. 2015. P. 2960-2963.
20. Starovoytov V. V. Utochnenie indeksa SSIM strukturnogo shodstva izobrazheniy // Informati-ka. 2018. T. 15. № 3. S. 41-55.
21. Ma J., Fan X., Yang S. X., Zhang X., Zhu X. Contrast Limited Adaptive Histogram Equalization Based Fusion for Underwater Image Enhancement. 2017. URL: https://www.preprints.org/manuscript/201703.0086/v1 (data obrascheniya: 12.04.2021).
22. Wang Z., Bovik A. C. Modern image quality assessment // Synthesis Lectures on Image, Video, and Mul-timedia Processing. 2006. V. 2. N. 1. P. 1-156.
23. Zhou W., Bovik A. C., Sheikh H. R., Simoncelli E. P. Image Qualifty Assessment: From Error Visibility to Structural Similarity // IEEE Transactions on Image Processing. April 2004. V. 13. Iss. 4. P. 600-612.
24. Kobzar' A. I. Prikladnaya matematicheskaya statistika. M.: Fizmatlit, 2006. 816 s.
25. Goryainov V. B., Pavlov I. V., Cvetkova G. M. i dr. Matematicheskaya statistika: ucheb. dlya vuzov / pod red. B. C. Zarubina, A. P. Krischenko. M.: Izd-vo MGTU im. N. E. Baumana, 2008. Vyp. XVII. 424 s.