VAC 05.13.01 Системный анализ, управление и обработка информации (по отраслям)
VAC 05.13.06 Автоматизация и управление технологическими процессами и производствами (по отраслям)
VAC 05.13.10 Управление в социальных и экономических системах
VAC 05.13.18 Математическое моделирование, численные методы и комплексы программ
VAC 05.13.19 Методы и системы защиты информации, информационная безопасность
UDK 681.513.54
GRNTI 20.01 Общие вопросы информатики
GRNTI 28.01 Общие вопросы кибернетики
GRNTI 49.01 Общие вопросы связи
GRNTI 50.01 Общие вопросы автоматики и вычислительной техники
GRNTI 82.01 Общие вопросы организации и управления
The existing methods of forecasting energy consumption are analyzed. The choice of the method of forecasting with the help of artificial neural network is explained. The application of parallel calculations on GPU is described. The paper considers a new algorithm of forecasting energy consumption based on the theory of artificial neural networks using CUDA technology to optimize forecasting energy consumption at an industrial enterprise. For practical usage of the new algorithm a software for Windows is designed, it is programed by C++. The experiment is made; on its bases the analysis of software operation and calculation of the consumed resources are carried out. In accordance with the results of the experiments, the developed parallel algorithm has reached the required accuracy of forecasting for a short period of time. The application of the algorithm will allow the enterprises to get more accurate forecasting and reduce the costs concerning electricity payments.
methods of forecasting, energy consumption forecasting, neural network, parallel algorithm, CUDA technology
1. Ob elektroenergetike: Federal'nyy zakon RF ot 26.03.2003 № 35-F3 // Ros. gazeta. 2003. 1 apr. S. 1.
2. Ahmet'yanov R. R., Delegodina L. A., Kopylova N. P. i dr. Zadachi prognozirovaniya energopotrebleniya v integrirovannoy ASKUE Novosibirskogo nauchnogo centra // Energosberezhenie. 2007. № 1. S. 42-47.
3. Ahmet'yanov R. R., Delegodina L. A., Kopylova N. P., Lucenko B. N., Sobstel' G. M., Cheydo G. P. Mul'tiplikativnaya model' sezonnogo energopotrebleniya predpriyatiy // Avtometriya. 2008. T. 44, № 3. S. 106-118.
4. Hong T., Shahidehpour M. Load Forecasting Case Study. National Association of Regulatory Utility Commissioners, 2015. 171 p.
5. Francisco V. Cipolla-Ficarra. Handbook of Research on Interactive information Quality in Expanding Social Network Communications. Latin Association of Human-Computer Interaction, Spain & International Association of Interactive Communication, Italy, 2015. 449 p.
6. Hyndman R. J., Athanasopoulos G. Forecasting: principles and practice. Publisher: OTexts, 2013. 291 p.
7. Zelinka I., Chen G., Rössler O. E., Snášel V., Abraham A. Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Springer International Publishing, Switzerland, 2013. 550 p.
8. Nadtoka I. I., Al' Ziheri B. M. Bayesovskaya neyrosetevaya model' dlya kratkosrochnogo prognozirovaniya elektropotrebleniya regiona // Stud. nauch. vesna: materialy region. nauch.-prakt. konf. stud., aspirantov i molodyh uchenyh vuzov Rostov. obl. Novocherkassk: YuRGPU (NPI), 2012. S. 136-138.
9. Solov'eva I. A., Dzyuba A. P. Prognozirovanie elektropotrebleniya s uchetom faktorov tehnologicheskoy i rynochnoy sredy // Nauchnyy dialog. 2013. № 7 (19). C. 97-111.
10. Gofman A. V., Vedernikov A. S., Vedernikova E. S. Povyshenie tochnosti kratkosrochnogo i operativnogo prognozirovaniya elektropotrebleniya energosistemy s primeneniem iskusstvennoy neyronnoy seti // Elektricheskie stancii. 2012. №. 7. S. 36-41.
11. Alekseeva I. Yu. Kratkosrochnoe prognozirovanie elektropotrebleniya v elektroenergeticheskih sistemah s ispol'zovaniem iskusstvennyh neyronnyh setey: avtoref. dis. … kand. tehn. nauk. Ivanovo, 2014. 20 s.
12. Shayeghi H. STLF Based on Optimized Neural Network Using PSO // International Journal of Electrical and Computer Engineering. 2009. 4:10. P. 1190-1199.
13. Haykin S. Neyronnye seti: polnyy kurs. M.: Izd. dom «Vil'yams», 2006. 1104 s.
14. Uossermen F. Neyrokomp'yuternaya tehnika: Teoriya i praktika. M.: Mir, 1992. 240 s.
15. Arzamascev A. A., Kryuchin O. V., Azarova P. A., Zenkova N. A. Universal'nyy programmnyy kompleks dlya komp'yuternogo modelirovaniya na osnove iskusstvennoy neyronnoy seti s samoorganizaciey struktury // Vestn. Tambov. un-ta. Ser.: Estestvennye i tehnicheskie nauki. 2006. T. 11, vyp. 5. S. 372-375.
16. Taranov R. V. Vychisleniya na GPU. Primenenie bibliotek uskorennyh po tehnologii CUDA // Fundamental'nye i prikladnye issledovaniya v sovremennom mire: materialy IX Mezhdunar. nauch.-prakt. konf. 2015. T. 1. S. 100-109.
17. Boreskov A. V., Harlamov A. A. Osnovy raboty s tehnologiey CUDA. M.: DMK Press, 2010. C. 26-44.
18. Shane Cook. CUDA Programming. A Developer’s Guide to Parallel Computing with GPUs. Elsevier Inc., 2013. P. 69-104.
19. Microsoft Software Developer Network. URL: https://msdn.microsoft.com/ru-ru/library/system.math.exp (v=vs.110).aspx (data obrascheniya: 09.04.2016).