GRNTI 34.39 Физиология человека и животных
GRNTI 62.13 Биотехнологические процессы и аппараты
GRNTI 69.01 Общие вопросы рыбного хозяйства
GRNTI 69.25 Аквакультура. Рыбоводство
GRNTI 69.31 Промышленное рыболовство
GRNTI 69.51 Технология переработки сырья водного происхождения
GRNTI 87.19 Загрязнение и охрана вод суши, морей и океанов
The paper proposes a fast method for rebuilding a three-dimensional computational grid for problems of modeling hydrodynamic fields in trawling systems during sound ranging at runtime using a hardware rasterizer of a graphics processor. When the position of a streamlined object changes, it is necessary to periodically update the boundary conditions at the grid nodes near its surface, which, in case of three-dimensional statement, is a laborious task. The suggested method allows a multiple acceleration of the grid update process compared to software implementations. The essence of the method lies in implementation of the pixel shader of the graphics pipeline during rendering, namely, the possibility of outputting the grid nodes into a 3D buffer taking into account information about Z-coordinate of a pixel and a velocity vector of a surface point. The method has been approved using a computer program developed on its basis. The method can be applied both in calculating the influence of hydrodynamic fields on propagation of acoustic waves, and in other applications.
rasterizer, rendering, graphics pipeline, computational grid, dynamic fields, trawl system
1. Nedostup A. A., Razhev A. O. Matematicheskie modeli rasprostraneniya akusticheskih voln s uchetom reverberacii, vremennogo i doplerovskogo rasseivaniya // Innovacii v nauke, obrazovanii i predprinimatel'stve: materialy XVI Mezhdunar. konf. VI Mezhdunar. Balt. mor. foruma (Kaliningrad, 3-6 sentyabrya 2018 g.). Kaliningrad: Izd-vo BGARF, 2018. T. 1. S. 221-227.
2. Nedostup A. A., Razhev A. O. Matematicheskaya model' imitatora ustroystv gidrolokacii // Morskie intellektual'nye tehnologii (v baze Web of Science). 2018. № 4 (42). T. 4. S. 283-286.
3. Goddard R. P. The Sonar Simulation Toolset, Release 4.6: Science, Mathematics, and Algorithms. Applied Physics Laboratory Universyty of Washington, 2008. 113 p.
4. Nedostup A. A., Razhev A. O. Matematicheskaya model' vzaimodeystviya raspornoy tralovoy doski s vodnoy sredoy // Morskie intellektual'nye tehnologii (v baze Web of Science). 2017. № 3 (37). T. 1. S. 154-157.
5. Naumov V. A., Meylus E. G. Metod rascheta gidrodinamicheskih koefficientov tralovoy doski // Izv. Kaliningr. gos. tehn. un-ta. 2005. № 9. S. 53-57.
6. Reite K. J. Modeling and control of trawl systems. Norway, Trondheim: Norwegian University of Science and Technology, 2006. 238 p.
7. Nedostup A. A., Razhev A. O. Statement of the problem of dynamic similarity of the trawl system // Vestn. Astrahan. gos. tehn. un-ta. Ser.: Rybnoe hozyaystvo. 2017. № 4. S. 61-68.
8. Harchenko S. A. Vliyanie rasparallelivaniya vychisleniy s poverhnostnymi mezhprocessornymi granicami na masshtabiruemost' parallel'nogo iteracionnogo algoritma resheniya sistem lineynyh uravneniy na primere uravneniy vychislitel'noy gidrodinamiki // Parallel'nye vychislitel'nye tehnologii: tr. Mezhdunar. nauch. konf. (Sankt-Peterburg, 28 yanvarya - 1 fevralya 2008 g.). Chelyabinsk: Izd-vo YuUrGU, 2008. S. 494-499.
9. Frolov V. Vvedenie v tehnologiyu CUDA // VMiK MGU. Setevoy zhurnal «Komp'yuternaya grafika i mul'timedia». 2008. № 1 (16). URL: http://masters.donntu.org/2013/fknt/reznichenko/library/article5.htm (data obrascheniya: 10.02.19).
10. Nedostup A. A., Razhev A. O. Primenenie graficheskogo processora v zadachah imitacionnogo modelirovaniya dinamicheskih processov v stavnom podvesnom nevode // Nauka, obrazovanie, innovacii: puti razvitiya: materialy VI Vseros. konf. (Petropavlovsk-Kamchatskiy, 21-24 aprelya 2015 g.). P-Kamchatskiy: Izd-vo KamchatGTU, 2015. S. 88-92.