GRNTI 34.39 Физиология человека и животных
GRNTI 62.13 Биотехнологические процессы и аппараты
GRNTI 69.01 Общие вопросы рыбного хозяйства
GRNTI 69.25 Аквакультура. Рыбоводство
GRNTI 69.31 Промышленное рыболовство
GRNTI 69.51 Технология переработки сырья водного происхождения
GRNTI 87.19 Загрязнение и охрана вод суши, морей и океанов
The article describes features of the hydraulics of the Irtysh riverbed in the sections of significant fish concentrations -wintering holes - in the open water period. There have been explored the waters of the largest (in area and in depth) Gornoslinkinskaya and Kondinskaya riverbed depressions located in the Uvat and Khanty-Mansi districts of the Tyumen region and Khanty-Mansi Autonomous District, respectively. The bathymetric characteristics of wintering holes were studied using computerized hydroacoustic complex AsCor (Promgidroakustika, Ltd., Petrozavodsk). To create the bottom relief of riverbeds there were used geographic information software programs Surfer 9.0 and Map Viewer 6.0. The study of the species composition of the fish population was carried out conducting control catches with stationary and drift nets. It has been found that, as a result of the combination of features of the riverbed, on the investigated sectors there is formed a complex hydrodynamic and turbulent environment. The holes are located on meanders with coefficients of high curvature of the bend of a channel, there have been found the ranges with narrowing channels at the entrance into the turn. In the process of the channel narrowing there occurs deepening of dynamic river flow axis and eroding of the bottom, which may prevent silting of the wintering holes. Significant differences in the depths cause a compensating current. Due to the bend of the riverbed in the water areas there are formed whirlpool zones, and arising transverse water currents close the surface and bottom streams of the river flow. The heterogeneous hydrodynamic environment of the Kondinskaya depression is complicated by the fact that the Konda flows into the bend of the Irtysh; as a result, there takes place an exchange of river impulses. Thus, when the longitudinal flow velocity is imposed on the transverse flows, there appears a spiral movement of the water masses and vertical vortex structures - whirlpools resulting in optical (turbidity) and turbulent (hydrodynamic) heterogeneity in the water column of the riverbed wintering holes.
fish aggregations, curvature of meander, whirlpool, transverse flow, the Ob’-Irtysh basin, wintering hole
1. Altay i Zapadnaya Sibir'. Nizhniy Irtysh i Nizhnyaya Ob' // Resursy poverhnostnyh vod SSSR. L.: Gidrometeoizat, 1973. T. 15. Vyp. 3. 423 s.
2. Velikanov M. A. Ruslovoy process: osnovy teorii. M.: Gos. izd-vo fiz.-mat. lit., 1958. 395 s.
3. Baryshnikov N. B. Dinamika ruslovyh potokov: ucheb. SPb.: RGGMU, 2007. 314 s.
4. Ovsyanik M. V. Obrazovanie vodovorota, smercha // Evraziyskiy Soyuz Uchenyh (ESU). Fiziko-matematicheskie nauki. 2016. № 7 (28). C. 78-84.
5. Verin O. G. Ideal'nyy vihr': voronka, vihrevoy shnur, toroidal'nyy vihr'. URL: http://nauka.info/files/files/1450991403.pdf. (data obrascheniya: 09.11.2017).
6. Borovkov V. S. Ruslovye processy i dinamika rechnyh potokov na urbanizirovannyh territoriyah. L.: Gidrometeoizdat, 1989. 286 s.
7. Jacobsen L., Perrow M. R. Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds // Ecology of Freshwater Fish. 1998. N. 7. P. 78-86. DOI:https://doi.org/10.1111/j.1600-0633.1998.tb00174.x.
8. Gliwicz M. Z., Slon J., Szynkarczyk I. Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge // Freshwater Biology. 2006. N. 51. P. 823-839. DOI:https://doi.org/10.1111/j.1365-2427.2006.01530.
9. Hansen A. G., Beauchamp D. A. Latitudinal and photic effects on diel foraging and predation risk in freshwater pelagic ecosystems // Journal of Animal Ecology. 2015. N. 84. P. 532-544. DOI:https://doi.org/10.1111/1365-2656.12295.
10. Härkönen L., Pekcan-Hekim Z., Hellén N., Ojala A., Horppila J. Combined Effects of Turbulence and Different Predation Regimes on Zooplankton in Highly Colored Water - Implications for Environmental Change in Lakes // PLOS ONE. 2014. N. 9 (11). P. 1-13. DOI: org/10.1371/journal.pone.0111942.
11. Jaspers C., Costello J. H., Sutherland K. R., Gemmell B., Lucas K. N., Tackett J., Dodge K., Colin S. P. Resilience in moving water: Effects of turbulence on the predatory impact of the lobate ctenophore Mnemiopsis leidyi // Limnology and oceanography. 2018. N. 63. P. 445-458. DOI:https://doi.org/10.1002/lno.10642.
12. Yudanov K. I., Kalihman I. L., Tesler V. D. Rukovodstvo po provedeniyu gidroakusticheskih s'emok. M.: VNIRO, 1984. 1124 s.
13. Blanckaert K. Hydrodynamic processes in sharp meander bends and their morphological implications // Journal of Geophysical Research. 2011. Vol. 116. P. 1-22. DOI:https://doi.org/10.1029/2010JF001806.
14. Vermeulen B., Hoitink A. J. F., Berkum van S. W., Hidayat H. Sharp bends associated with deep scours in a tropical river: The river Mahakam (East Kalimantan, Indonesia) // Journal of Geophysical Research: Earth Surface. 2014. Vol. 119. P. 1441-1454. DOI:https://doi.org/10.1002/2013JF002923.
15. Goncharov V. N. Ravnomernyy turbulentnyy potok. M.; L.: Gos. energet. izd-vo, 1951. 146 s.
16. Blanckaert K., Kleinhans M. G., McLelland S. J., Uijttewaal W. S. J., Murphy B. J., van de Kruijs A., Parsons D. R., Chen Q. Flow separation at the inner (convex) and outer (concave) banks of constant-width and widening open-channel bends // Earth Surface Processes and Landforms. 2013. N. 38. P. 696-716. DOI:https://doi.org/10.1002/esp.3324.
17. Zeng J., Constantinescu G., Blanckaert K., Weber L. Flow and bathymetry in sharp open-channel bends: Experiments and predictions // Water Recourses Research. 2008. N. 44. P. 1-22. DOI:https://doi.org/10.1029/2007WR006303.
18. Vermeulen B., Hoitink A. J. F., Labeur R. J. Flow structure caused by a local cross-sectional area increase and curvature in a sharp river bend // Journal of Geophysical Research: Earth Surface. 2015. N. 120. P. 1771-1783. DOI:https://doi.org/10.1002/2014JF003334.
19. Konsoer K. M., Rhoads B. L., Best J. L., Langendoen E. J., Abad J. D., Parsons D. R., Garcia M. H. Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics // Water Recourses Research. 2016. N. 52. P. 9621-9641. DOI:https://doi.org/10.1002/2016WR019040.
20. Bogomolov A. I., Borovkov V. S., Mayranovskiy F. G. Vysokoskorostnye potoki so svobodnoy poverhnost'yu. M.: Stroyizdat, 1979. 344 s.
21. Hince I. O. Turbulentnost'. Ee mehanizm i teoriya. M.: Gos. izd-vo fiz.-mat. lit., 1963. 680 s.
22. Dorrell R. M., Darby S. E., Peakall J., Sumner E. J., Parsons D. R., Wynn R. B. Superelevation and overspill control secondary flow dynamics in submarine channels // Journal of geophysical research. Oceans. 2013. N. 118. P. 3895-3915. DOI:https://doi.org/10.1002/jgrc.20277.
23. Engel F. L., Rhoads B. L. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend // Earth Surface Processes and Landforms. 2016. N. 41. P. 1211-1226. DOI:https://doi.org/10.1002/esp.3895.
24. Sebok E., Duque C., Engesgaard P., Boegh E. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: channel bend and straight channel // Hydrological Processes. 2015. N. 29. P. 458-472. DOI:https://doi.org/10.1002/hyp.10170.
25. Karaushev A. V. Rechnaya gidravlika. L.: Gidrometeoizdat, 1969. 418 s.
26. Dargahi B. Three-dimensional flow modelling and sediment transport in the River Klarälven // Earth Surface Processes and Landforms. 2004. N. 29. P. 821-852. DOI:https://doi.org/10.1002/esp.1071.
27. Bradbrook K. F., Lane S. N., Richards K. S. Numerical simulation of three-dimensional, time-averaged flow structure at river channel confluences // Water Recourses Research. 2000. N. 36 (9). P. 2731-2746. DOI:https://doi.org/10.1029/2000WR900011.
28. Rhoads B. L., Sukhodolov A. N. Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface // Water Recourses Research. 2008. N. 44. P. 1-17. DOI:https://doi.org/10.1029/2007WR006634.
29. Alho P., Mäkinen J. Hydraulic parameter estimations of a 2D model validated with sedimentological findings in the point bar environment // Hydrological Processes. 2010. N. 24. P. 2578-2593. DOI:https://doi.org/10.1002/hyp.7671 2010.
30. Popov I. V. Zagadki rechnogo rusla. L.: Gidrometeoizdat, 1977. 168 s.
31. Constantinescu G., Miyawaki S., Rhoads B., Sukhodolov A., Kirkil G. Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: Insight provided by an eddy-resolving numerical simulation // Water Recourses Research. 2011. N. 47. W05507. DOI:https://doi.org/10.1029/2010WR010018.
32. Kasvi E., Vaaja M., Alho P., Hyyppä H., Hyyppä J., Kaartinen H., Kukko A. Morphological changes on meander point bars associated with flow structure at different discharges // Earth Surface Processes and Landforms. 2013. N. 38. P. 577-590. DOI:https://doi.org/10.1002/esp.3303.
33. Constantinescu G., Kashyap S., Tokyay T., Rennie C. D., Townsend R. D. Hydrodynamic processes and sediment erosion mechanisms in an open channel bend of strong curvature with deformed bathymetry // Journal of Geophysical Research: Earth Surface. 2013. N. 118. P. 480-496. DOI:https://doi.org/10.1002/jgrf.20042.
34. Riley J. D., Rhoads B. L., Parsons D. R., Johnson K. K. Influence of junction angle on three-dimensional flow structure and bed morphology at confluent meander bends during different hydrological conditions // Earth Surface Processes and Landforms. 2015. N. 40. P. 252-271. DOI:https://doi.org/10.1002/esp.3624.
35. Sukhodolov A. N., Krick J., Sukhodolova T. A., Cheng Z., Rhoads B. L., Constantinescu G. S. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology // Journal of Geophysical Research: Earth Surface. 2017. N. 122. P. 1278-1293. DOI: 10. 1002/ 2016JF004126.
36. Boyer C., Roy A. G., Best J. L. Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology // Journal of Geophysical research. 2006. N. 111. F04007. DOI:https://doi.org/10.1029/2005JF000458.
37. Ginevskiy A. S. Teoriya turbulentnyh struy i sledov. Integral'nye metody rascheta. M.: Mashinostroenie, 1969. 400 s.
38. Ismail H., Viparelli E., Imran J. Confluence of density currents over an erodible bed // Journal of Geophysical Research: Earth Surface. 2016. N. 121. P. 1251-1272. DOI:https://doi.org/10.1002/2015JF003768.
39. Znamenskaya N. S. Gidravlicheskoe modelirovanie ruslovyh processov. L.: Gidrometeoizdat, 1992. 240 s.
40. Rhoads B. L., Sukhodolov A. N. Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities // Water Recourses Research. 2001. N. 37 (9). P. 2393-2410. DOI:https://doi.org/10.1029/2001WR000316.
41. Bever A. J., MacWilliams M. L. Factors influencing the calculation of periodic secondary circulation in a tidal river: numerical modelling of the lower Sacramento River, USA // Hydrological Processes. 2016. N. 30. P. 995-1016. DOI:https://doi.org/10.1002/hyp.10690.
42. Zinger J. A., Rhoads B. L., Best J. L., Johnson K. K. Flow structure and channel morphodynamics of meander bend chute cutoffs: A case study of the Wabash River, USA // Journal of Geophysical Research: Earth Surface. 2013. N. 118. P. 2468-2487. DOIhttps://doi.org/10.1002/jgrf.20155.
43. Lane S. N. Hydraulic modelling in hydrology and geomorphology: a review of high-resolution approaches // Hydrological Processes. 1998. N. 12. P. 1131-1150. DOI:https://doi.org/10.1002/(SICI)1099-1085(19980630) 12:8<1131::AID-HYP611>3.0.CO;2-K.
44. Bradbrook K. F., Biron P. M., Lane S. N., Richards K. S., Roy A. G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model // Hydrological Processes. 1998. N. 12. P. 1371-1396. DOI:https://doi.org/10.1002/(SICI)1099-1085(19980630)12:8<1371::AID-HYP620>3.0.CO;2-C.
45. Rhoads B. L., Kenworthy S. T. Time-averaged flow structure in the central region of a stream confluence // Earth Surface Processes and Landforms. 1998. N. 23. P. 171-191. DOI:https://doi.org/10.1002/(SICI)1096-9837(199802)23:2<171:: AID-ESP842>3.0.CO;2-T.