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MATHEMATICAL SIMULATION OF KNIFE PROFILE
RESISTANCE FORCE DURING FISH CUTTING
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Abstract. The article focuses on studying the fish cutting process and modeling forces of harm-
ful resistance. The fish muscular tissue rheological properties are described by a Maxwell-Thomson
model. The conditions of constrained compression of the material across the width and the absence
of constrained compression in the direction of movement of the knife are accepted. On the basis
of the energy approach, the profile resistance force of the double-edged knife has been interpreted
as deformational force of the friction at the macroscopic scale level, provided that the surface of the
faces is smooth. The mathematical models for dimensional and dimensionless profile resistance
forces of the knife without side edges have been developed. The dependence of the dimensional
force on the sharpening angles, knife thickness, rheological properties and cutting speed has been
established. The dependence of the dimensionless force on the dimensionless cutting speed and
measure of the muscle tissue elasticity has been shown. The profile resistance forces of flat-back
knife and double-edged knives have been analyzed. With sharpening angle of back edges = 5°; 10°;
20°; 50°, force maximums are 0.317; 0.306; 0.288; 0.274, respectively. When the values of instan-
taneous modulus of elasticity 1.5:10% 2.0-10%; 2.5:10% 3.0-10° N/mz, the maximums of the speci-
fied force are 0.310; 0.411; 0.513; 0.614 N, respectively. With the values of elasticity = 4; 7; 11; 15,
dimensionless force maximums of flat-back knife are 1.959; 3.166; 4.774; 6.381 and without side
edges — 1.193; 1.864; 2.764; 3.663, respectively.
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Introduction

Ensuring resource saving when cutting fish provides for a thorough analysis of the resistance
forces. Reduction of harmful resistance force involves the reduction of its components — the profile
resistance forces and the friction force.

Mathematical modeling of the food cutting process is a relevant scientific direction and attracts
the attention of researchers. An experimental relationship between the resistance force of the fibrous
material destruction and the motion speed of the knife has been established [1]. The effect of the blade
sharpening angle on the parameters of this process was analyzed [2]. The regularities of high-speed
processing of viscoelastic materials in a wide range of speeds: from 0.001 m /s to 10 m /s, have been
studied [3, 4]. Finite element modeling of the viscoelastic product destruction has been performed [5].
An approach to determine the optimal geometry of a knife by minimizing the normal component of the
resulting resistance (maximizing “sliding” cutting) has been developed [6, 7].

However, currently there is no analytical description of the harmful resistance forces acting on the
working tool when cutting fish. At the same time, to optimize the geometry of the knife according by the
criterion of minimum resistance, mathematical modeling of the forces acting on its faces is required.

Material

The choice of rheological models of fish muscle tissue has been substantiated. Differential equa-
tions of models with their solutions for three different loading conditions have been considered. The
results of experimental tests of muscular tissue of scab, mackerel, Atlantic sardinella for direct creep,
relaxation and reverse creep are presented. It has been established that the muscle tissue of the fish
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before destruction shows a limited flow under load, relaxes under constant load to an equilibrium state,
and is fully restored at full unloading. It is shown that the results of the experimental tests approximately
correspond to the three-element Maxwell — Thomson rheological model.

Methods

The purpose of mathematical modeling is to determine the profile resistance force that occurs
when cutting fish with a two-edged knife without side edges.

According to modern concepts of tribology, the profile resistance force is interpreted as the
deformation friction force at the macroscopic scale level [8]; Popov, 2017 [9]. At this level, it is neces-
sary to solve the problem of determining the sliding friction force of the stamp (knife as a completely
solid smooth body) on the deformable viscoelastic material (cut muscle tissue of the fish). In this case,
the roughness of the knife surface is not taken into account, since the macrogeometry of the profile
of the cutting working tool is the determining factor.

The task of finding the deformation force of friction when sliding a knife on a viscoelastic mate-
rial at the macroscopic level (the profile resistance force) is advisable to solve on the basis of an energy
approach [10, 11]. This approach is more general and is based on the determination of energy losses due
to the viscoelastic deformation of the material. The energy approach is valid for a stamp of arbitrary shape,
which allows it to be applied to knives with different profiles.

Mathematical simulation

According to the energy approach, when the stamp slides, the energy dissipation in a viscoelastic
material occurs due to viscous friction in the Kelvin-Voigt element damper of the Maxwell-Thomson model.
The deformation friction force of the stamp when sliding on a viscoelastic base is determined as follows:

F=[le0) p0 N 3 0)- (el (1)

a

where p(y) — the normal contact pressure on the stamp from the material; g(y) — the function that de-

termines the stamp geometry (the shape of the knife profile); g'(y) — derivative of the specified func-
tion; a, b — coordinates along the axis (0, y) of the extreme points of the arbitrary shape stamp. The
function g(y) determines the difference between the coordinates of the point of the stamp profile with
the coordinate y and the profile point with zero coordinate, so that g(0) = 0.

Consider the movement in the fish muscle tissue of an elementary knife, shown in Fig. 1. The
center of the moving Cartesian coordinate system Oxy is at a point.
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Fig. 1. The scheme of movement of double-edged knife without side edges during fish cutting
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In a quasistatic setting, we believe that at any time the knife is in a state of equilibrium. When
cutting, the blade performs a rectilinear uniform motion in the material. The material is in conditions
of constrained compression along the axis Ox, and the cutting is carried out without compressing the
material in the direction of knife movement along the axis Oy (the height of the material sample
is much larger than its width). In Fig. 1 are marked: p»— the contact pressure of the horizontal elemen-
tary fiber dy at the point 4, normal to the direction of knife movement; ¢, — the counter material
resistance to the movement of the point 4, due to the deformation of the specified fiber along the axis
Ox; 6, — the contact pressure of the material on the front inclined face at a point 4; ps— the normal
contact pressure of the horizontal elementary fiber dy at the point / of the back inclined edge of the
knife; G, — associated contact pressure at the point / of the back inclined edge of the knife;

G, — the contact pressure of the material on the back inclined edge at a point /.

We introduce the following notation: £, — instantanecous modulus of elasticity of fish muscle tis-
sue (Young's modulus); E; — high-elasticity modulus of fish muscle tissue; n — the coefficient of dy-
namic viscosity of the fish muscle tissue; ey = E¢/E; — a measure of fish muscle tissue elasticity; /; —
blade edge length; 6 — half the thickness of the knife; a — half the angle of sharpening the front edge

of the knife; B — half the angle of sharpening the back edge of the knife; 7, = tgo,/tgP +; h,, — height

of the inclined front edge; / — half the width of the material in the equilibrium state; v — knife speed;

E= Eq £, = £, (quasistatic modulus of elasticity); kz_M; w=1-exp — k3.
E,+E, 1+E,/E n-v tga

= &nvziutga ; F,— dimensional profile resistance force; 17“1 — dimensionless profile resistance force.
E; -8

The right half of a two-edging (double-edged) knife (Fig. 1) has two extreme contact points:
a point O(0, 0) and a point G (8- 7, /tgB, J,), as well as one corner point B(3, 4, ). Thus, in expres-
sion (1) a =0, b =y, . In this regard, the profile resistance force of a two-edging knife according to (1)
is determined by the following expression:

F=1 (fg dy+—[p pz(yc)]j- 2)

Let us write the boundary conditions of the knife contact with the material in the following form
p(0) = 0; p(j;G): 0. Let us represent the integral in expression (2) as the sum of the integrals. Then,

taking into account the boundary conditions, the expression (2) has the following form:
N Vg
F = Z{Ig’(y)‘ p()dy+ [2'(¥) ps (y)dy} (3)
0 hm

The profile shape of the two-edging knife without side edges determines the type of functions
g() and g'(y):

( _{ tga-y;y€(0,h,) _{ tgo; y (0,7, )
_yth7ye(hm’.)7G)7 _th;ye(hm’yG)'

Let us substitute into expression (3) the expressions for normal contact pressures p,(y) and pg(y)
at the front and back inclined faces and the coordinates y, of the extreme contact point G, obtained by

successively solving the first order differential equation of the Maxwell — Thomson model in regions
OB and BG [12, 13]. We use the formula of Newton — Leibniz and get the expression for the profile
resistance force of a two-edging knife without side edges:
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Let us introduce the dimensionless knife speed: y =——.— " Then taking into account

h, (E,+E)
F, =F, -E; F, = (82 1, -&)/Z : &£=E,/(1+ey); Vo =V /h, (dimensionless coordinate of a point G);

ly = tga/tgf, the expression for the dimensionless profile resistance force of a two-edging knife has

the following form:
F =F[F,=[0,5+7-¢, (1+(exp(-1/7)-1)7) ] -

-3 — 32—
_%{[tuﬁ.x—em-V—l](exp(—l vycj—I]VvL(tuﬁ—em.V)(yc—1)——y02 1}.

op
Results
Fig. 2-6 show the simulation results of the profile resistance force of a two-edging knife without

side edges. The force F; corresponds to a knife with a straight butt, ﬁ'l — a knife with side edges, Fl -
a knife without side edges.
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Fig. 2. Dependence of the profile resistance force on the cutting speed at different rheological properties
of the material (o = 5°; B =15°% 6 =3 mm; /=50 mm; L = 4,, = 12 mm):
a — at low speeds; b — at high speeds;
1-Ey=15-10°N/m* E;=0.1-10° N/m% 2 —Ey=2-10°N/m% E, = 0.3 - 10° N/m%;
3-Ey=25-10°N/m’, E, = 0.6 - 10° N/m’; 4 — E, =3 - 10° N/m’, E, =0.8 - 10° N/m’
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Fig. 3. Dependence of the profile resistance force on the cutting speed at different sharpness half-angle

B of the back inclined edge: a — at low speeds; b — at high speeds;
Ey=3-10"N/m* ey =3.75;8=3mm: ] —p=5%2-Pp=10%3—p=20°4—p=>50°
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Fig. 4. Dependencies of the dimensionless profile resistance
force of double-edged knife with side edges (@) and knife without side edges (b)
on the dimensionless cutting speed at different values of elasticity measure (tuB =0.8):
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Fig. 5. Dependencies of the dimension (a) and dimensionless () profile resistance force
on the dimensionless cutting speed:
a—Ey=3-10°N/m’, E; =0.8 - 10° N/m*; n=1.5 - 10" N's/m’; 0 = 5% § = 3 mm;
1-F;2-F;3- F;b—en=375143=081~-F;2-F;3-F,
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Fig. 6. Dimension (@) and dimensionless (b) profile resistance force:
a — dependence of dimension forces on coefficient of dynamic viscosity of the material (v =1 mm/s):
1=F;2-F;3- F;

b — dependence of dimensionless forces on elasticity measure (L =3; v =10; lyp =0.8):

Discussion of results

To reduce energy costs for cutting it is necessary to strive to reduce the resistance forces. In this
regard, let us analyze the influence of various parameters on the dimensional and dimensionless profile
resistance forces of a two-edged (double-edged) knife without side edges (Fig. 1). In this case, the pro-
cess of reverse creep of the material proceeds without intermediate stress relaxation with constant
deformation of the muscle tissue. Fig. 2 shows that with a monotonous increase in the elastic properties
of the material, the maximum force increases significantly and is achieved at very low cutting speeds.
With a further increase in cutting speed with increased stiffness of muscle tissue, the profile resistance
force of the knife decreases. Fig. 3 shows that in the absence of the knife side faces, the influence
on the indicated force of the sharpening angle of the back inclined edges is essential. With an increase
in the specified angle of sharpening at low cutting speeds, the force maximum decreases, and at high
speeds, the force also decreases. At angles of sharpening 5°; 10°; 20°; 50° the maximums of the con-
sidered force are 0.317; 0.306; 0.288; 0.274 N, respectively.

Fig. 4 shows that the absence of stress relaxation with a constant deformation of the material by
the side faces leads to a significant decrease in the dimensionless profile resistance force, ceteris pari-
bus. With the values of the elasticity measure 4; 7; 11; 15 the maximums of the dimensionless force
profile resistance force of the knife with the side faces are 1.959; 3.166; 4.774; 6.381, without side fac-
es — 1.193; 1.864; 2.764; 3.663, respectively. In general, Fig. 2-4 show that as the cutting speed
increases, the force tends asymptotically to zero.

Fig. 5, 6 illustrate that the greatest profile resistance force occurs in the case of cutting fish with
a straight butt knife, and the smallest force corresponds to a two-edging knife without side edges,
which, with accepted assumptions, is the most effective tool.

The dependences of dimensional and dimensionless forces on the elastic modulus, elasticity
measures and coefficient of dynamic viscosity of a material are monotonic. When the values of the
instantaneous modulus of elasticity 3-10° N/m"; lagging modulus of elasticity 0.8-10° N/m?*; coefficient
of dynamic viscosity 1.5-10" N-s/m’; the half angle of sharpening the front inclined edges and the half
thickness of the knife is 3 mm; then the limit of the profile resistance force of the knife with a straight
butt is 1.345 N; the maxima of the resistance forces of the knife with and without side edges are 1.025 N
and 0.646 N, respectively. When the measure of material elasticity is 3.75 and the ratio of tangent an-
gles of sharpening is 0.8, the limit of the dimensionless profile resistance force of the knife with
a straight butt is 2.367, the maxima of the dimensionless profile resistance force of knives with and
without side edges are 1.804 and 1.136, respectively.

With increasing material viscosity, the profile resistance force of the knife with a straight butt
increases and asymptotically tends to the limit value, while the profile resistance forces of the two-
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edged knives decrease and asymptotically tend to zero. At the same time from Fig. 4-6, we see that the
minimum dimensional force occures when cutting fish with a knife without side edges. With an in-
crease in the measure of material elasticity, the smallest dimensionless force also corresponds to the
specified two-edged knife.

Conclusion

1. The profile resistance force of the knife essentially depends on the rheological properties
of the fish - the elastic modulus and the dynamic viscosity coefficient. With an increase in the rigidity
of the raw material, this force is significantly reduced at medium and high cutting speeds.

2. The dependence of the profile resistance force of the knife on the cutting speed is non-
monotonic with a pronounced maximum. With increasing speed, this force asymptotically tends to
a zero value, which distinguishes it from the resistance force of a single-edged knife, which, under the
same conditions, monotonously increases and asymptotically tends to its limit value.

3. The knife geometry affects the profile resistance force of the knife. Half-angles of sharpening
the front and back inclined edges affect the dimensional force, which determines the expediency
of setting and solving the problem of optimizing the knife profile by the criterion of the minimum force
of harmful resistance. The half thickness of the knife affects the instant-elastic and high-elastic compo-
nents of the resistance force.

4. The absence of side edges leads to the absence of viscoelastic energy losses during stress
relaxation, which leads to a significant reduction in the profile resistance force. This allows us to con-
clude that for knives with straight edges, ceteris paribus, the lowest energy costs for cutting are provid-
ed when cutting with a thin two-edging knife without side edges. This is confirmed by current trends
in the development of working tools of filleting machines.
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MATEMATHYECKOE MOJEJIUPOBAHHUE
CWJIbI COTPOTUBJIEHUA
MMPOPUJIA HOXA ITPU PESAHUH PbIbbI

O. B. Azees, B. A. Haymos, 0. A. @ambvixoe

Kanununepaockuii 2ocyoapcmeennulii mexnuieckuil yHugepcumen,
Kanununepao, Poccuiickas @edepayus

IIpoBeneHsl HCCIENOBaHKWE TMPOLECCA PE3aHUs PBHIOBI M MOJCTHUPOBAHUE CHJI BPEIHBIX
CONPOTHBJICHHU. MBbIllIeuHas TKaHb PHIOBI OMKCAHA PEOJIOTMIECKOM Monenbio MakcBema — TomcoHa.
[IpuHATHL YCIIOBHSI CTECHEHHOTO CXaTHS MaTepuaja I0 IMIHPHHE W OTCYTCTBHS CTECHEHHOTO
CKaTUs 10 HANPaBJICHUIO JIBIKEHUS HOXa. Ha OCHOBE PHEPTeTHYECKOTO MMOIX0a CHIa COTIPOTHB-
neHns (GOpMBI HOKa MpEICTaBIeHa Kak IepOpMalOHHAs CHJIA TPEHHS Ha MaKpPOCKOTHYECKOM
MacITabHOM YpOBHE IIPU YCIIOBHH TIIAJKOCTH MOBEPXHOCTH TpaHeil. Pa3zpaboTaHsl MaTemMaTHUecKue
MOJIeTH JUTS pa3MEpHOH u 0e3pa3MepHOI CHII COMPOTUBIECHUS GOPMBI HOXKa 0e3 OOKOBBIX TpaHEH.
VYcTaHOBIIEHa 3aBHCUMOCTH Pa3MEPHOW CHJIBI OT YTJIOB 3aTOYKH, TOJIIMHBEI HOXA, PEOJOTHIECKUX
CBOWCTB MaTepuaia M CKOPOCTH pe3aHus. [IpociexeHa 3aBUCUMOCTh 0e3pa3MepHOil CHIIBI OT 0e3-
Pa3MEpHOI CKOPOCTH pe3aHMs U MEPhI 3JaCTUYHOCTU MBINICYHO!N TKaHU. BEITIONHEH CpaBHHUTENb-
HBIW aHAJIU3 CHJI COTIPOTHBIICHUS (POPMBI HOXKA C MPSIMBIM 00YXOM H IByXKPOMOUHBIX HOXeH. [Ipu
yIiax 3aTOYKH 3aJHUX HAaKJIOHHBIX rpaneil 5; 10; 20; 50° makcumyMmsl cuibl coctaBisitoT 0,317; 0,306;
0,288; 0,274 H cootsercTBeHHO. [Ipy 3HAYEHHSIX MIHOBEHHOTO MOyis ympyrocta 1,5 - 10% 2 - 10°;
2,5+ 10% 3 - 10° H/™* makcumyMsI crbl coctasisitor 0,310; 0,411; 0,513; 0,614 H cOOTBETCTBEHHO.
[Ipu 3HAYEHUSX MEPBI MACTUIHOCTH 4; 7; 11; 15 MakcuMyMmBbl Oe3pa3MepHON CHITBI COMTPOTHBIIC-
HUsT GOPMBI HOKa ¢ OOKOBBIMH TPaHAMH cOcTaBisiIoT 1,959; 3,166; 4,774; 6,381; 6e3 OOKOBBIX
rpaneit — 1,193; 1,864; 2,764; 3,663 cOOTBETCTBEHHO.

KiroueBble cJI0Ba: pbida, pe3aHue, Cuia, CONPOTHBIECHHE, popMa, HOXK, TPaHb, PEOJIOTHS,
BSI3KOYNIPYTOCTb.
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