UDC 639.371.5.03/.06:639.3(549.3)

### Dulon Roy

# LARGE SCALE FISH PRODUCTION THOUGH CARP POLYCULTURE SYSTEM IN A FISH FARM IN BANGLADESH

Abstract. The aim of the study is to obtain maximum fish production per unit area within semiintensive culture system. The duration of rearing Rui (Labeo rohita), Catla (Catla catla), Mrigal (Cirrhinus mrigala), Common carp (Cyprinus carpio), Grass carp (Ctenopharyngodon idella) and Silver carp (Hypophthalmichthys molitrix) in 5 ponds (0.15 ha to 0.18 ha in size and water depth 2-2.5 m) was 8 months (March-October). All the aquatic vegetation was removed, all unwanted fish were destroyed with phostoxin. In 7 days after liming (200 kg/ha) the following fertilizers were introduced: organic (coudung at the rate of 1500 kg/ha) and chemical (urea – 50 kg/ha, TSP – 25 kg/ha). The water temperature was  $28.4 \pm 0.18$  to  $29.2 \pm 0.88$ , pH value ranged from  $6.96 \pm 0.34$  to  $7.43 \pm 0.52$  and dissolved oxygen was  $6.72 \pm 0.22$  to  $7.74 \pm 0.55$  mg/l. In addition, fingerlings got fish flour, rice bran, wheat bran, mastered oil cake (once a day according to 4-6 % of the body weight). Sampling of fish was every 15 days. The highest average level of survival of fish was 89.2% (Rui - 91.0%), the lowest -82.9% (carp - 78.0%). The average maximum weight was fixed in silver carp -  $814.2 \pm 11.8$  and grass carp  $-781,1 \pm 11,8$ ; the average minimum was in Rui (501.6  $\pm$  10.8). The total volume of fish production (25 877.78 kg/ha) was higher than the average fish culture procedures followed in the rural areas of Bangladesh. Rui (1254.11 kg/ha, pond area 0.18 ha) and Mrigal (1222.22 kg/ha, pond area 0.15 ha) dominated by this parameter despite the highest values of stocking density. The obtained results confirm the efficiency of the proposed method of fish production in polyculture.

Key words: pond, polyculture, carp, growth rate, production volume.

#### Introduction

Bangladesh is a densely populated country of 147 570 km2 with a population of 130 million people. It is fortunate in having an extensive water resource in the form of ponds, natural depressions (haors and heels), lakes, canals, rivers and estuaries covering an area of 4.56 million ha [1].

Bangladesh is one of the world leading inland fisheries producer with a production of 1 646 819 tonnes during 2003–2004, with marine catch total of 455 601 tonnes and a total production from aquaculture of 914 752 tonnes during 2003–2004. Bangladesh's total fish production for the year totaled above 2.1 million tonnes [1]. Food and Agriculture Organization of the United Nations (FAO) [2] ranked Bangladesh as sixth largest aquaculture producing country with its estimated production of 856 956 tonnes in 2003 [2]. Aquaculture accounted for about 43.5% of the total fish production during 2003–2004, with inland open water fisheries contributed 34.8% [1].

Polyculture, the rearing of two or more species in each culture unit, enjoys wide popularity throughout much of the world [3]. Polyculture comprises different compatible species of fish of different trophic and spatial niches are raised together in the same pond to utilize all sorts of natural food available in the pond.

In Bangladesh, aquaculture production systems are mainly extensive and extended extensive, with some semi-intensive and in very few cases intensive systems. Although the culture fishery contributes over 55% of inland fish production, it covers only about 11% of the total inland water resources. As most of the farmers are poor and living in rural area, it is not possible for them to follow the intensive technology of fish production which requires higher inputs supply. An appropriate intermediate technology for the farmers of Bangladesh, thus should be the semi-intensive culture technique which requires moderate inputs and production management based mainly on proper stocking rate and ratio and adequate manuring on a regular basis with or without supplementary feeding.

Indigenous freshwater carps (22%) and exotic carps (10%) from both the farming and capture sectors are the primary contributors to total production [4]; other freshwater fish include catfish, snake-heads and small indigenous species. However, carp polyculture in ponds is more productive, capital intensive and is a more profitable activity when compared to the other culture systems.

## **Materials and Methods**

The experiment was carried out in five different ponds at Ratan Matsya Khamar, Netrakona, Bangladesh. Management of fish polycuture in ponds includes successive stages from pond preparation to final harvesting of fish.

*Pond preparation.* A pond with suitable environmental features would give higher fish production per unit area than that of a pond having adverse environmental conditions. All the aquatic vegetation (floating, submerged or emergent) was removed from the pond. The pond bottom was made even to allow effective netting and harvesting of fish. The broken pond dyke repaired. All the predatory and unwanted fishes were eradicated from the pond by using phostoxin (2 tablets/decimal). Liming of the pond was carried out at the rate of 200 kg/ha in order to neutralize the soil acidity, settles excess dissolved organic matter and make the pond free from any parasites. After 7 days of liming, ponds were manured with coudung at the rate of 1500 kg/ha. The chemical fertilizers such as urea and TSP were applied at the rate of 50 and 25 kg/ha correspondingly all over the ponds.

Species selection. Selection of compatible fast growing species was of vital importance in maximizing fish production. This was also considered that the species grows fast with accumulation of natural food. A combination of six species, viz. Rui (*Labeo rohita*), Catla (*Catla catla*), Mrigal (*Cirrhinus mrigala*), Common carp (*Cyprinus carpio*), Grass carp (*Ctenopharyngodon idella*) and Silver carp (*Hypophthalmichthys molitrix*). Of these, Rui was column feeder; Catla was surface feeder; Common carp and Mrigal was bottom feeder; Grass carp was surface/column feeder and Silver carp was surface feeder.

Stocking density. Fishes were stocked in three tanks (Pond 1 - T1, Pond 2 - T2, Pond 3 - T3, Pond 4 - T4, Pond 5 - T5) by completely randomized design (CRD) (Table 1).

Table 1

| Figh Spacing  | Stoking | Stoking densities of different fish species in five different treatments |      |      |      |  |  |  |  |
|---------------|---------|--------------------------------------------------------------------------|------|------|------|--|--|--|--|
| Fish Species  | T1      | T2                                                                       | Т3   | T4   | Т5   |  |  |  |  |
| Rui           | 500     | 400                                                                      | 400  | 400  | 500  |  |  |  |  |
| Catla         | 300     | 200                                                                      | 200  | 200  | 300  |  |  |  |  |
| Mrigal        | 250     | 250                                                                      | 400  | 300  | 300  |  |  |  |  |
| Common Carp   | 200     | 200                                                                      | 300  | 300  | 200  |  |  |  |  |
| Grass Carp    | 200     | 150                                                                      | 200  | 200  | 200  |  |  |  |  |
| Silver Carp   | 300     | 200                                                                      | 200  | 200  | 300  |  |  |  |  |
| Total         | 1750    | 1400                                                                     | 1700 | 1600 | 1800 |  |  |  |  |
| Pond area, ha | 0.18    | 0.16                                                                     | 0.15 | 0.16 | 0.18 |  |  |  |  |

Stocking densities of different fishes in five different ponds

*Supplementary feeding.* After stocking of fingerlings, supplementary food (fish meal, rice bran, wheat bran, mastered oil cake and wheat flour) was applied once a day according to the 4–6% of the body weight (Table 2).

Table 2

Composition of supplementary feed with theirdry weight and percentage

| Feed Ingredients  | Dry weight, g | %  |
|-------------------|---------------|----|
| Wheat Bran        | 150           | 15 |
| Rice bran         | 250           | 25 |
| Mastered oil cake | 300           | 30 |
| Fish Meal         | 200           | 20 |
| Wheat flour       | 100           | 10 |

*Sampling of fish.* Sampling of fish was done in every fifteen days to check the health condition, growth rate and mortality of the fishes. Periodic sampling of fish was done at least in a month.

*Water quality parameters.* Physical and chemical parameters such as water temperature (°C), dissolved oxygen (mg/l), and pH were measured by thermometer, DO meter (DO8401) and pH meter (PH 004) respectively.

*Harvesting*. Final harvesting of fish was done after 6 month of stocking in tanks when the carrying capacity of tank was saturated.

*Statistical analysis.* Simple arithmetical tools like average, range, percentage etc. were used to tabulate the results. For analysis of treatment effects of fish production and separation of treatment means by Duncans Multiple Range Test (DMRT) were performed as per methods outlined in [5].

#### Results

*Physical and chemical parameters:* The optimum fish production depends on the physical and chemical qualities of water. The water quality parameters that were recorded during the study period are provided in Table 3.

Table 3

|            | No of Estima- | Physical and chemical parameters |                 |                           |  |  |  |
|------------|---------------|----------------------------------|-----------------|---------------------------|--|--|--|
| Treatments | tion          | Temperature, °C                  | рН              | Dissolved Oxygen,<br>mg/l |  |  |  |
| T1         | 32            | $28.4 \pm 0.18$                  | $6.96 \pm 0.34$ | $6.92 \pm 0.52$           |  |  |  |
| T2         | 32            | $29.2 \pm 0.88$                  | $7.25 \pm 0.38$ | $7.35 \pm 0.31$           |  |  |  |
| T3         | 32            | $28.8 \pm 0.85$                  | $7.33 \pm 0.41$ | $7.74 \pm 0.55$           |  |  |  |
| T4         | 32            | $28.6 \pm 0.65$                  | $7.35 \pm 0.31$ | $6.85 \pm 0.72$           |  |  |  |
| T5         | 32            | $28.7 \pm 0.25$                  | $7.43 \pm 0.52$ | $6.72 \pm 0.22$           |  |  |  |

#### Average physico chemical parameters in five different ponds

The values of water quality parameters were within the acceptable ranges that regulate this semi-intensive culture system strongly. The water temperature was almost the same ranged from  $28.4 \pm 0.18$  to  $29.2 \pm 0.88$ , pH value ranged from  $6.96 \pm 0.34$  to  $7.43 \pm 0.52$  and Dissolved Oxygen was  $6.72 \pm 0.22$  to  $7.74 \pm 0.55$  mg/l.

*Fish Survival:* During the period of investigation the survival of the fish was fairly high in all the ponds. The survival rate was estimated after the total count of the fishes at the end of the culture period. Highest survival rate was recorded in Pond 1. The survival rate of the fishes that stocked in different ponds is presented in Table 4.

Table 4

| Treatments | Species Name | Stocking No. | Harvested No. | Survival, % |
|------------|--------------|--------------|---------------|-------------|
|            | Rui          | 500          | 455           | 91.0        |
|            | Catla        | 300          | 260           | 86.6        |
|            | Mrigal       | 250          | 220           | 88.0        |
| T1         | Common Carp  | 200          | 175           | 86.0        |
|            | Grass Carp   | 200          | 181           | 90.5        |
|            | Silver Carp  | 300          | 270           | 90.0        |
|            | Total        | 1750         | 1561          | 89.2        |
|            | Rui          | 400          | 341           | 85.2        |
|            | Catla        | 200          | 165           | 82.5        |
|            | Mrigal       | 250          | 213           | 85.2        |
| T2         | Common Carp  | 200          | 156           | 78.0        |
|            | Grass Carp   | 150          | 123           | 82.0        |
|            | Silver Carp  | 200          | 165           | 82.5        |
|            | Total        | 1400         | 1163          | 83.0        |
|            | Rui          | 400          | 320           | 80.0        |
|            | Catla        | 200          | 157           | 78.5        |
|            | Mrigal       | 400          | 359           | 89.7        |
| T3         | Common Carp  | 300          | 245           | 81.6        |
|            | Grass Carp   | 200          | 166           | 83.0        |
|            | Silver Carp  | 200          | 163           | 81.5        |
|            | Total        | 1700         | 1410          | 82.9        |
|            | Rui          | 400          | 343           | 85.7        |
|            | Catla        | 200          | 173           | 86.5        |
|            | Mrigal       | 300          | 241           | 80.3        |
| T4         | Common Carp  | 300          | 270           | 90.0        |
|            | Grass Carp   | 200          | 175           | 87.5        |
|            | Silver Carp  | 200          | 171           | 85.5        |
|            | Total        | 1600         | 1373          | 85.8        |
|            | Rui          | 500          | 440           | 88.0        |
|            | Catla        | 300          | 269           | 89.6        |
|            | Mrigal       | 300          | 257           | 85.6        |
| Т5         | Common Carp  | 200          | 169           | 84.5        |
| 10         | Grass Carp   | 200          | 173           | 86.5        |
|            | Silver Carp  | 300          | 251           | 83.6        |
|            | Total        | 1800         | 1559          | 86.6        |

#### Survival rate of fishes in five different ponds

*Fish growth and production:* Observations were made on fish growth performances in terms of monthly weight gain and daily weight gain. The average cumulative weight gain of fishes for five ponds is presented in Table 5. Gross production of individual species of fish was calculated from the average final weight gain multiplied by the actual number of fish harvested. Estimation for the gross fish production in different ponds is shown in Table 6.

Table 5

|               |                 | Stocking               | Average cumulative growth performances, g |                  |                  |                  |                  |                  |                  |  |
|---------------|-----------------|------------------------|-------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|
| Species       | Treat-<br>ments | Size<br>in March,<br>g | April                                     | May              | June             | July             | August           | September        | October          |  |
|               | T1              | $18.4 \pm 1.1$         | $48.4 \pm 2.9$                            | $114.0 \pm 3.6$  | $161.6 \pm 3.3$  | $223.8 \pm 4.8$  | $295.3 \pm 7.3$  | $380.8 \pm 5.2$  | $464.5 \pm 7.9$  |  |
|               | T2              | $20.1 \pm 1.4$         | $50.7 \pm 3.9$                            | $111.0 \pm 8.3$  | $160.2 \pm 7.6$  | $225 \pm 10.4$   | $301.2 \pm 10.9$ | $384.6 \pm 10.3$ | $493.5 \pm 13$   |  |
| Rui           | T3              | $20.7 \pm 0.8$         | $60.2 \pm 7.0$                            | $113.0 \pm 9.3$  | $165.2 \pm 8.5$  | $230.5 \pm 11$   | $305 \pm 11.6$   | $384.6 \pm 10.3$ | $495.9 \pm 12$   |  |
|               | T4              | $25.0 \pm 3.9$         | $68.7 \pm 9.3$                            | $121.3 \pm 9.2$  | $183.7 \pm 11.6$ | $245.3 \pm 10.6$ | $310 \pm 10.3$   | $389.1 \pm 10.6$ | $501.6 \pm 10.8$ |  |
|               | T5              | $24.1 \pm 3.0$         | $68.2 \pm 8.8$                            | $120.3 \pm 7.2$  | $182.4 \pm 9.5$  | $242.3 \pm 10.2$ | $306.8 \pm 8.8$  | $388.1 \pm 8.7$  | $500.0 \pm 9.7$  |  |
|               | T1              | $24.0 \pm 3.0$         | $88.8 \pm 5.8$                            | $170.1 \pm 3.3$  | $249.7 \pm 5.7$  | $327.8 \pm 6.7$  | $413.8 \pm 9.1$  | $495.4 \pm 6.4$  | $576.8 \pm 7.4$  |  |
|               | T2              | $25.0 \pm 2.0$         | $90.3 \pm 4.3$                            | $176.5 \pm 6.7$  | $256.4 \pm 6.8$  | $334.7 \pm 6.9$  | $419.1 \pm 5.7$  | $500.5 \pm 8.12$ | $578.5 \pm 9.0$  |  |
| Catla         | T3              | $25.0 \pm 2.0$         | $88.5 \pm 5.9$                            | $174.5 \pm 8.5$  | $254.7 \pm 6.7$  | $335.4 \pm 7.4$  | $421.0 \pm 5.1$  | $502.7 \pm 10.9$ | $582.4 \pm 12.5$ |  |
|               | T4              | $27.5 \pm 3.9$         | $91.4 \pm 10.1$                           | $180.5 \pm 9.0$  | $259.2 \pm 7.3$  | $337.1 \pm 9.3$  | $425.5 \pm 7.1$  | $503.4 \pm 10.6$ | $586.1 \pm 11.4$ |  |
|               | T5              | $28.8 \pm 3.7$         | $95.7 \pm 9.1$                            | $187.4 \pm 8.5$  | $264.2 \pm 7.9$  | $346.5 \pm 11.5$ | $430.5 \pm 10.1$ | $516.2 \pm 9.5$  | $601.4 \pm 10.5$ |  |
|               | T1              | $19.1 \pm 1.6$         | $57.0 \pm 5.6$                            | 128.1 ±5.3       | $206.8 \pm 5.9$  | $272.1 \pm 5.4$  | $360.7 \pm 4.5$  | $457.0 \pm 6.8$  | $515.4 \pm 6.0$  |  |
|               | T2              | $22.8 \pm 1.6$         | $75.2 \pm 5.1$                            | $131.0 \pm 5.6$  | $210.8 \pm 7.6$  | $278.1 \pm 8.5$  | $363.7 \pm 10.3$ | $455.5 \pm 8.1$  | $521.1 \pm 9.9$  |  |
| Mrigal        | T3              | $21.8 \pm 1.3$         | $72.2 \pm 5.5$                            | $130.7 \pm 5.8$  | $212.2 \pm 10.1$ | $282.7 \pm 11.0$ | $366.0 \pm 9.0$  | $458.0 \pm 8.2$  | $524.0 \pm 10.7$ |  |
| •             | T4              | $22.5 \pm 1.9$         | $74.5 \pm 6.2$                            | $134.5 \pm 9.3$  | $215.2 \pm 9.3$  | $285.5 \pm 11.3$ | $371.7 \pm 11.0$ | $463.7 \pm 8.6$  | $526.8 \pm 11.7$ |  |
|               | T5              | $26.8 \pm 3.2$         | $81.0 \pm 6.1$                            | $136.5 \pm 9.2$  | $219.5 \pm 7.8$  | $288.4 \pm 9.7$  | $384.7 \pm 10.7$ | $468.0 \pm 8.0$  | $537.5 \pm 10.6$ |  |
|               | T1              | $22.4 \pm 1.9$         | $103.4 \pm 6.1$                           | $182.0 \pm 9.3$  | $278.0 \pm 13.0$ | $345.8 \pm 8.7$  | $416.8 \pm 8.7$  | $514.8 \pm 8.1$  | $613.0 \pm 12.7$ |  |
| C             | T2              | $21.8 \pm 2.4$         | $106.0 \pm 8.6$                           | $183.0 \pm 8.9$  | $279.1 \pm 11.1$ | $347.2 \pm 8.4$  | $417.8 \pm 8.6$  | $516.2 \pm 7.6$  | $618.7 \pm 14.7$ |  |
| Common        | T3              | $23.0 \pm 2.1$         | $107.4 \pm 7.9$                           | $182.2 \pm 9.8$  | $280.5 \pm 10.0$ | $345.7 \pm 11.4$ | $419.2 \pm 10.6$ | $515.2 \pm 9.9$  | $618.7 \pm 10.5$ |  |
| Carp          | T4              | $23.2 \pm 2.6$         | $108.8 \pm 8.8$                           | $182.8 \pm 10.0$ | $280.1 \pm 9.2$  | $351.4 \pm 9.1$  | $425.0 \pm 10.4$ | $517.4 \pm 10.4$ | $620.1 \pm 10.1$ |  |
|               | T5              | $24.1 \pm 2.1$         | $110.2 \pm 8.9$                           | $184.0 \pm 10.0$ | $283.0 \pm 10.0$ | $362.1 \pm 11.5$ | $429.2 \pm 11.4$ | $521.7 \pm 9.8$  | $621.4 \pm 10.8$ |  |
|               | T1              | $24.7 \pm 1.9$         | $111.5 \pm 6.8$                           | $265.4 \pm 12.7$ | $342.7 \pm 10.3$ | $467.4 \pm 8.1$  | $571.0 \pm 9.4$  | $676.0 \pm 12.1$ | $781.1 \pm 11.8$ |  |
| C             | T2              | $23.4 \pm 2.0$         | $114.5 \pm 9.2$                           | $267.0 \pm 11.3$ | $344.2 \pm 11.8$ | $470.2 \pm 8.5$  | $572.1 \pm 9.7$  | $675.5 \pm 11.6$ | $774.4 \pm 10.8$ |  |
| Grass<br>Carp | T3              | $24.2 \pm 1.3$         | $112.1 \pm 8.2$                           | $265.5 \pm 9.5$  | $342.8 \pm 10.0$ | $467.0 \pm 8.7$  | $571.5 \pm 10.5$ | $672.7 \pm 9.8$  | $775.8 \pm 11.1$ |  |
| Carp          | T4              | $25.0 \pm 2.1$         | $114.0 \pm 8.3$                           | $266.7 \pm 9.2$  | $345.2 \pm 11.4$ | $469.5 \pm 9.05$ | $576.4 \pm 9.2$  | $673.2 \pm 8.7$  | $775.1 \pm 10.5$ |  |
|               | T5              | $26.1 \pm 2.4$         | $115.0 \pm 8.5$                           | $265.7 \pm 11.4$ | $344.1 \pm 10.0$ | $466.7 \pm 8.2$  | $574.8 \pm 8.0$  | $670.0 \pm 7.9$  | $773.0 \pm 9.7$  |  |
|               | T1              | $32.0 \pm 2.7$         | $132.5 \pm 5.8$                           | $284.4 \pm 7.1$  | $375.0 \pm 7.6$  | $492.1 \pm 10.0$ | $604.8 \pm 14.2$ | $715.0 \pm 12.2$ | $810.0 \pm 14.5$ |  |
| Silver        | T2              | $33.0 \pm 2.3$         | $138.4 \pm 6.1$                           | $280.0 \pm 8.2$  | $379.2 \pm 7.9$  | $502.1 \pm 15.8$ | $613.4 \pm 13.6$ | $720.4 \pm 13.8$ | $814.2 \pm 11.8$ |  |
|               | T3              | $32.0 \pm 1.9$         | $139.7\pm8.2$                             | $279.0\pm8.8$    | $382.8 \pm 11.9$ | $513.2 \pm 11.7$ | $616.4 \pm 12.1$ | $722.0\pm10.7$   | $812.8\pm10.0$   |  |
| Carp          | T4              | $32.8 \pm 2.1$         | $141.1 \pm 9.1$                           | $285.2 \pm 9.7$  | $386.8 \pm 11.3$ | $517.5 \pm 9.3$  | $620.5\pm9.5$    | $723.5\pm10.3$   | $814.2 \pm 10.6$ |  |
|               | T5              | $31.2 \pm 1.8$         | $136.8 \pm 9.1$                           | $272.7 \pm 9.2$  | $375.7 \pm 10.5$ | $499.7 \pm 10.5$ | $607.8 \pm 9.7$  | $704.4 \pm 9.6$  | $795.0 \pm 11.9$ |  |

## Average cumulative growth performances in months in five different treatments

Table 6

Gross production of fishes in five different treatments

| Species<br>Name | Treatments | Fish<br>stocking<br>No. | No.<br>of Survival | Initial<br>weight, g | Final weight,<br>g | Gross<br>Production, kg | Area<br>of pond, ha | Gross<br>production,<br>kg/ha/crop |
|-----------------|------------|-------------------------|--------------------|----------------------|--------------------|-------------------------|---------------------|------------------------------------|
|                 | T1         | 500                     | 455                | 18.4                 | 464.5              | 211.35                  | 0.18                | 1174.15                            |
|                 | T2         | 400                     | 341                | 20.1                 | 493.5              | 168.28                  | 0.16                | 1051.77                            |
| Rui             | T3         | 400                     | 320                | 20.7                 | 495.9              | 158.69                  | 0.15                | 1057.92                            |
|                 | T4         | 400                     | 343                | 25.0                 | 501.6              | 172.05                  | 0.16                | 1075.31                            |
|                 | T5         | 500                     | 440                | 24.1                 | 500.0              | 220.00                  | 0.18                | 1222.22                            |
|                 | T1         | 300                     | 260                | 24.0                 | 576.8              | 149.97                  | 0.18                | 833.16                             |
|                 | T2         | 200                     | 165                | 25.0                 | 578.5              | 95.45                   | 0.16                | 596.58                             |
| Catla           | T3         | 200                     | 157                | 25.0                 | 582.1              | 91.39                   | 0.15                | 609.26                             |
|                 | T4         | 200                     | 173                | 27.5                 | 586.1              | 101.40                  | 0.16                | 633.72                             |
|                 | T5         | 300                     | 269                | 28.8                 | 601.4              | 161.78                  | 0.18                | 898.76                             |
|                 | T1         | 250                     | 220                | 19.1                 | 515.4              | 113.39                  | 0.18                | 629.93                             |
|                 | T2         | 250                     | 213                | 22.8                 | 521.1              | 110.99                  | 0.16                | 693.71                             |
| Mrigal          | T3         | 400                     | 359                | 21.8                 | 524.0              | 188.12                  | 0.15                | 1254.11                            |
| e               | T4         | 300                     | 241                | 22.5                 | 526.8              | 126.96                  | 0.16                | 793.49                             |
|                 | T5         | 300                     | 257                | 26.8                 | 537.5              | 138.14                  | 0.18                | 767.43                             |

*Continued table 6* 

| Species<br>Name | Treatments | Fish<br>stocking<br>No. | No.<br>of Survival | Initial<br>weight, g | Final weight,<br>g | Gross<br>Production, kg | Area<br>of pond, ha | Gross<br>production,<br>kg/ha/crop |
|-----------------|------------|-------------------------|--------------------|----------------------|--------------------|-------------------------|---------------------|------------------------------------|
|                 | T1         | 200                     | 175                | 22.4                 | 613.0              | 107.28                  | 0.18                | 595.97                             |
| Commun          | T2         | 200                     | 156                | 21.8                 | 618.7              | 96.52                   | 0.16                | 603.23                             |
| Common          | T3         | 300                     | 245                | 23.0                 | 618.7              | 151.58                  | 0.15                | 1010.54                            |
| Carp            | T4         | 300                     | 270                | 23.2                 | 620.1              | 167.43                  | 0.16                | 1046.42                            |
|                 | T5         | 200                     | 169                | 24.1                 | 621.4              | 105.02                  | 0.18                | 583.43                             |
|                 | T1         | 200                     | 181                | 24.7                 | 781.1              | 141.38                  | 0.18                | 785.44                             |
| Carrier         | T2         | 150                     | 123                | 23.4                 | 774.4              | 95.25                   | 0.16                | 595.32                             |
| Grass           | T3         | 200                     | 166                | 24.2                 | 775.8              | 128.78                  | 0.15                | 858.55                             |
| Carp            | T4         | 200                     | 175                | 25.0                 | 775.1              | 135.64                  | 0.16                | 847.77                             |
|                 | T5         | 200                     | 173                | 26.1                 | 773.0              | 133.73                  | 0.18                | 742.94                             |
|                 | T1         | 300                     | 270                | 32.0                 | 810.0              | 218.70                  | 0.18                | 1215.00                            |
| Cileren         | T2         | 200                     | 165                | 33.0                 | 814.2              | 134.34                  | 0.16                | 839.64                             |
| Silver          | T3         | 200                     | 163                | 32.0                 | 812.8              | 132.49                  | 0.15                | 883.24                             |
| Carp            | T4         | 200                     | 171                | 32.8                 | 814.2              | 139.23                  | 0.16                | 870.18                             |
|                 | T5         | 300                     | 251                | 31.2                 | 795.0              | 199.55                  | 0.18                | 1108.58                            |
|                 |            |                         | •                  |                      | •                  |                         | Total               | 25877.78                           |

Gross production of fishes in five different treatments

Due to availability of the supplementary food the fishes are increased in body weight enormously. All of six species attained an average maximum weight at the last month of the study period (Table 5) in five different ponds. Silver carp attained the maximum weight  $810.0 \pm 14.5$ ,  $814.2 \pm 11.8$ ,  $812.8 \pm 10.0$ ,  $814.2 \pm 10.6$  and  $795.0 \pm 11.9$  g in five ponds respectively. Grass carp also followed by the silver carp that gained their weight  $781.1 \pm 11.8$ ,  $774.4 \pm 10.8$ ,  $775.8 \pm 11.1$ ,  $775.1 \pm 10.5$  and  $773.0 \pm 9.7$  g in Pond 1, Pond 2, Pond 3, Pond 4 and Pond 5 respectively. Rui gained their maximum weight  $(501.6 \pm 10.8)$  in Pond 4. Catla, Mrigal and Common Carp gained their maximum weight  $601.4 \pm 10.5$ ,  $537.5 \pm 10.6$  and  $621.4 \pm 10.8$  g respectively in the same pond (Pond 5). This also noted that in the Pond 5 silver carp comparatively gained minimum weight where Catla gained their maximum weight.

### Discussion

The average growth of Rui (Labeo rohita), Catla (Catla catla), Mrigal (Cirrhinus mrigala), Common carp (Cyprinus carpio), Grass carp (Ctenopharyngodon idella) and Silver carp (Hypophthalmichthys molitrix) were observed in all five ponds. The average cumulative growth increment of fishes showed that fishes gained their weight significantly with the months. In this semi-intensive pond culture system, due to availability of natural food the fishes were fed actively and gained their weight very quickly. Davis et al. [6] observed that slow growth of fishes due to less feeding activity during fish growth study. Observations made on the five ponds clearly indicate that silver carp exhibited better growth than other species. But the growth rate of grass carp also followed by the silver carp and the growth rate of common carp is closer to the grass carp. This indicates that the growth rate of the exotic carps is higher than any other fish species. Jhingran [7] reported about the superiority of growth performances by silver carp. In the water quality parameter, the recorded water temperature  $(28.4 \pm 0.18 \text{ to})$  $29.2 \pm 0.88$ ) was favorable for active growth and feeding of fishes because water temperature affects the feeding pattern and growth of fish. The range of pH and dissolved oxygen was also in normal condition that affected the growth of the fishes positively. From the investigation, it is found that the production of fish is high and rather satisfactory. DoF [8] reported that Carp production from trial and experimental ponds was 2000 kg/ha/yr.

#### Conclusion

Polyculture is an effective way to maximize benefit from available natural food in a pond. The possibilities of increasing fish production per unit area, through polyculture, are considerable. Growth rate of these carps in semi intensive culture system was higher than we observed. The productivity, growth and survivability of the fishes in the pond environment were notable. The present study disclosed that the production of the ponds was higher than the average fish culture procedures followed in the rural areas of Bangladesh. This indicates that the feed and fertilizers used were adjusted according to the body weight.

#### REFERENCES

1. *Fishery Statistical Yearbook of Bangladesh 2003-2004*. Fisheries Resources Survey System, Department of Fisheries, Ministry of Fisheries and Livestock, Matshya Bhaban, Dhaka, 2005. 46 p.

2. FAO. Yearbook, Fishery and Aquaculture Statistics. Rome, 2005. Available at: http://www.fao.org/fishery/publications/yearbooks/en.

3. Bardach J. E., Ryther J. H., Mc Larney W. O. Aquaculture: the farming and husbandry of freshwater and marine organisms. New York, Wiley-Interscience, 1972. 868 p.

4. Azim M. E., Wahab M. A., Verdegem M. C. J. Status of aquaculture and fisheries in Bangladesh. *World Aquaculture*, 2002, 34 (4), pp. 37–40.

5. Gomez K. A., Gomez A. A. Statistical Procedures for Agricultural Research. John Wiley and Sons, New York, 1985. 680 p.

6. Davis C. H., Bhuiyan A. R., Amen M. Fish production in managed farmers ponds with different feeding and stocking model. *Proc.* 4<sup>th</sup> Seminar, Maximum Livestock production from Minimum Land. BAU, Mymensingh, 1983. P. 111–129.

7. Jhingran V. G. Fish and fisheries of India. Hindustan Publishing Co, New Delhi, 1982. P. 394-450.

8. *Fish catch statistics of Bangladesh*. Fisheries Resources Survey System, Department of Fisheries, Dhaka, 1992.

The article submitted to the editors 19.05.2016

#### INFORMATION ABOUT THE AUTHOR

**Dulon Roy** – Bangladesh; Dhaka-1100; Jagannath University; Assistant Professor of the Department of Zoology; dulonroy@gmail.com.



## Дулон Рой

# КРУПНОМАСШТАБНОЕ ПРОИЗВОДСТВО КАРПОВЫХ В ПОЛИКУЛЬТУРЕ В РЫБНОМ ХОЗЯЙСТВЕ РЕСПУБЛИКИ БАНГЛАДЕШ

Цель исследования – получение максимального количества рыбы на единицу площади в рамках полуинтенсивной системы культуры. Продолжительность выращивания в 5 прудах (площадь – 0,15–0,18 га, глубина – 2,0–2,5 м): роху (Labeo rohita), катли (Catla catla), индийского карпа (Cirrhinus mrigala), карпа (Cyprinus carpio), белого амура (Ctenopharyngodon idella) и белого толстолобика (Hypophthalmichthys molitrix) – 8 месяцев (март – октябрь). Из прудов была удалена вся водная растительность, фостоксином уничтожены все нежелательные рыбы. Через 7 дней после известкования (200 кг/га) вносились удобрения: органические (навоз – 1500 кг/га) и химические (мочевина – 50 кг/га, тройной суперфосфат – 25 кг/га). Температура воды составляла  $28.4 \pm 0.18 - 29.2 \pm 0.88$  °C; pH –  $6.96 \pm 0.34 - 7.43 \pm 0.52$ ; содержание растворенного в воде кислорода – 6,72 ± 0,22–7,74 ± 0,55 мг/л. Дополнительно молодь получала рыбную муку, рисовые отруби, пшеничные отруби, льняной жмых (один раз в день по 4-6 % от массы тела). Отбор проб проводился каждые 15 дней. Самый высокий средний уровень выживаемости рыб – 89,2 % (у роху – 91,0 %), самый низкий – 82,9 % (у карпа – 78,0 %). Средний максимальный вес отмечен у толстолобика –  $814,2 \pm 11,8$  и белого амура – 781,1 ± 11,8 г; средний минимальный – у роху – 501,6 ± 10,8 г. Общий объем производства рыбы (25 877,78 кг/га) был выше, чем в среднем по рыбоводным хозяйствам Бангладеш. Доминировали по этому показателю роху (1254,11 кг/га, площадь пруда 0,18 га) и индийский карп (1222,22 кг/га, площадь пруда 0,15 га), несмотря на самые высокие значения плотности посадки. Полученные данные подтверждают результативность предлагаемого способа производства рыбы в поликультуре.

Ключевые слова: пруд, поликультура, карповые, темпы роста, объем производства.

#### СПИСОК ЛИТЕРАТУРЫ

1. *Fishery* Statistical Yearbook of Bangladesh 2003–2004. Fisheries Resources Survey System, Department of Fisheries, Ministry of Fisheries and Livestock, Matshya Bhaban, Dhaka, 2005. 46 p.

2. FAO. Yearbook, Fishery and Aquaculture Statistics, Rome, 2005. URL: http://www.fao.org/fishery/ publications/yearbooks/en.

3. Bardach J. E., Ryther J. H., Mc Larney W. O. Aquaculture: the farming and husbandry of freshwater and marine organisms. New York, Wiley-Interscience, 1972. 868 p.

4. Azim M. E., Wahab M. A., Verdegem M. C. J. Status of aquaculture and fisheries in Bangladesh // World Aquaculture. 2002. 34 (4). P. 37–40.

5. *Gomez K. A., Gomez A. A.* Statistical Procedures for Agricultural Research. John Wiley and Sons, New York, 1985. 680 p.

6. Davis C. H., Bhuiyan A. R., Amen M. Fish production in managed farmers ponds with different feeding and stocking model // Proc. 4<sup>th</sup> Seminar, Maximum Livestock production from Minimum Land. BAU, My-mensingh, 1983. P. 111–129.

7. Jhingran V. G. Fish and fisheries of India. Hindustan Publishing Co, New Delhi, 1982. P. 394-450.

8. *Fish catch* statistics of Bangladesh. Fisheries Resources Survey System, Department of Fisheries, Dhaka, 1992.

Статья поступила в редакцию 19.05.2016

#### ИНФОРМАЦИЯ ОБ АВТОРЕ

**Дулон Рой** – Бангладеш; Дакка-1100; Джаганнат Университет, доцент кафедры зоолоruu; dulonroy@gmail.com.

