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Аннотация. Исследуется задача построения оценок достоверности контроля технического состояния парка 

сложных технических систем (СТС) с метрологическим обеспечением. Используемая классическая полумар-

ковская стационарная модель функционирования СТС включает следующие технические состояния: работо-

способное, отказ, поверка отказавшего образца СТС, поверка работоспособного образца, состояние ложного 

отказа, состояние необнаруженного отказа, восстановление (ремонт). Основным показателем эффективности 

парка СТС является коэффициент готовности к применению по назначению. Для поддержания коэффициента 

готовности на высоком уровне в штатном режиме при эксплуатации парка проводятся периодические поверки 

с оптимальной периодичностью и оптимальным допуском на контролируемый параметр. Для оценки досто-

верности нахождения СТС в указанных состояниях предложены четыре показателя: правильность, точность, 

полнота и F1-метрика, которые используются в теории искусственного интеллекта как метрики бинарного 

классификатора. Проведено моделирование процессов функционирования парка СТС в разных режимах и при 

разных условиях. Показано влияние интервала между поверками, допуска на контролируемый параметр, ин-

тенсивности отказов и времени восстановления на показатели достоверности и на коэффициент готовности. 

Применение показателей достоверности позволит оператору парка СТС с метрологическим обеспечением 

комплексно анализировать актуальную оперативную информацию о текущем состоянии парка, разрабатывать 

и применять стратегии управления парком в зависимости от сложившейся на данный момент ситуации. Полу-

ченные результаты могут быть внедрены и использованы в системе поддержки принятия решения при опера-

тивном дистанционном управлении парком СТС. 

Ключевые слова: бинарный классификатор, достоверность контроля состояния, полумарковская модель, 

метрологическое обеспечение, сложная техническая система 
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Abstract. The problem of constructing estimates of the reliability of monitoring the technical condition of a fleet of 

complex technical systems (CTS) with metrological support is investigated. The classical semi-Markov stationary 

model of CTS functioning used includes the following technical conditions: operational, failure, verification of  

a failed CTS sample, verification of a working sample, false failure condition, undetected failure condition, restoration 

(repair). The main indicator of the effectiveness of the CTS fleet is the coefficient of readiness for its intended use. To 

maintain the availability coefficient at a high level, periodic inspections are carried out during normal operation of the 

fleet with optimal frequency and optimal tolerance for the controlled parameter. To assess the reliability of finding the 

CTS in these states, four indicators are proposed: correctness, accuracy, completeness, and the F1 metric, which are 

used in the theory of artificial intelligence as binary classifier metrics. The simulation of the processes of the CTS fleet 

functioning in different modes and under different conditions has been carried out. The effect of the interval between 

verifications, tolerance on the controlled parameter, failure rate, recovery time on reliability indicators and the coeffi-

cient is shown ready. The use of reliability indicators will allow the operator of the CTS park with metrological sup-

port to comprehensively analyze up-to-date operational information about the current state of the park, develop and 

apply park management strategies depending on the current situation. The results obtained can be implemented and 

used in the decision support system for operational remote control of the CTS fleet. 

Keywords: binary classifier, reliability of condition monitoring, semi-Markov model, metrological support, complex 

technical system 
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Введение 
В настоящее время в разных сферах деятельно-

сти широко применяются сложные технические си-
стемы (СТС) [1–3], в том числе и дистанционно 
управляемые оператором системы с метрологиче-
ским обеспечением (МО), которые подлежат перио-
дическому метрологическому обслуживанию. В за-
висимости от конкретной решаемой задачи, а также 
от наличия различных возмущающих (мешающих) 
факторов МО может происходить как в штатной, так 
и внештатной ситуации (с оптимальной периодично-
стью и оптимальным допуском на контролируемый 
определяющий параметр (ОП) или с отличающими-
ся от оптимальных значений параметрами поверки. 
Оператор, принимающий оперативное решение по 
управлению парком таких СТС, нуждается в досто-
верной и, по возможности, полной информации  

о техническом состоянии парка СТС, которая долж-
на актуализироваться по мере появления новой ин-
формации. 

Основным показателем эффективности парка 
СТС с МО является коэффициент готовности к при-
менению [1, 4]. С целью поддержания коэффициента 
готовности на высоком уровне проводятся периоди-
ческие поверки, суть которых заключается в контро-
ле нахождения ОП СТС в требуемых пределах. Если 
в результате поверки выявляется, что ОП образца 
СТС вышел за допустимые пределы, производится 
восстановление (ремонт) соответствующего образца 
СТС, в результате которого ОП вновь попадает  
в требуемый допустимый диапазон. 

В силу случайного характера изменения ОП  
и погрешности его измерения результаты контроля 
состояния (поверки) имеют случайный характер  
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и могут быть определены лишь с некоторой досто-
верностью.  

В настоящей работе предлагается в дополнение 
к традиционным в метрологии показателям досто-
верности (α – условная вероятность ложного отказа, 
β – условная вероятность необнаруженного отказа 
при поверке) использовать еще 4 показателя досто-
верности: правильность, точность, полноту и F1-ме- 
ру, которые широко применяются в теории искус-
ственного интеллекта как метрики бинарного клас-
сификатора [5–7]. Указанные 4 показателя ком-
плексно характеризуют текущее состояние парка 
СТС с МО в части достоверности контроля техни-
ческого состояния, функционирующего достаточно 
продолжительное время (в стационарном режиме). 

Целью введения новых показателей (метрик) при 
моделировании МО парка СТС является обеспече-
ние оператора актуальной, полной и достоверной 
информацией, отражающей не только результаты 
периодически проводимых поверок, но и информа-
цией о текущем стационарном состоянии парка СТС 
в целом, которая характеризуется стационарными 
вероятностями нахождения образцов парка СТС  
в возможных технических состояниях [1, 4]. Так, 
для классической полумарковской стационарной 
модели основными состояниями являются работо-
способное состояние, состояние отказа, поверка 
работоспособной СТС, поверка отказавшей СТС, 
состояние необнаруженного отказа, состояние лож-
ного отказа, восстановление (ремонт). 

Предлагаемые показатели достоверности явля-
ются функциями от вероятностей нахождения парка 
СТС в указанных семи технических состояниях. 
Они имеют интуитивно понятную интерпретацию, 
комплексно (разносторонне) характеризуют состоя-
ние парка и предназначены для принятия обосно-
ванных решений оператором. 

 
Методы 
Описание метрик бинарного классификатора. 

Распространенными метриками бинарного класси-
фикатора являются правильность (accuracy), точ-
ность (precision), полнота (recall) и F1-мepа [5, 6].  

Правильность представляет собой пропорцию 
верно предсказанных наблюдений:  

правильность = ( ) / ( ),TP TN TP TN FP FN+ + + +  

где ТР (true positive, количество истинноположи-
тельных предсказаний – это наблюдения, которые 
относятся к положительному классу (работоспо-
собное) и были предсказаны классификатором 
корректно); TN (true negative, количество истинно-
отрицательных предсказаний – это наблюдения, 
которые относятся к отрицательному классу 
(наличие отказа) и были предсказаны корректно); 
FP (false positive, количество ложноположитель-
ных предсказаний, также называемых ошибкой 
первого рода, – это наблюдения, которые были 

отнесены к неисправному классу, тогда как на 
практике относятся к исправному); FN (false 
negative, количество ложноотрицательных пред-
сказаний, также называемых ошибкой второго ро-
да, – это наблюдения, которые были отнесены  
к работоспособному классу, тогда как на практике 
относятся к неработоспособному).  

Удобство использования показателя правиль-
ности объясняется лаконичностью его значения: 
это отношение количества верно предсказанных 
наблюдений к общему количеству наблюдений.  

Точность является долей наблюдений, отнесен-
ных классификатором к положительным и являю-
щихся истинно положительными: 

точность / ( ).TP TP FP= +  

Этот показатель может быть интерпретирован 
как измерение шума в предсказаниях классифика-
тора, – другими словами, он показывает, с какой 
вероятностью наши положительные предсказания 
правильны.  

Отметим, что высокоточные модели являются 
«пессимистичными» и генерируют положительные 
прогнозы только при полной уверенности.  

Полнота – это доля наблюдений, определяемых 
классификатором как положительные, от всех 
наблюдений истинно положительного класса:  

полнота / ( ).TP TP FN= +  

Этот показатель отражает способность модели 
определять наблюдения положительного класса. 
Модели с высоким показателем полноты являются 
«оптимистичными», они имеют низкую планку при 
генерации положительных предсказаний [5, 6].   

Отметим, что показатели «точность» и «полно-
та» проигрывают в интуитивности показателю 
«правильность». 

Также отметим, что если данные имеют несба-
лансированные классы (например, одному из клас-
сов принадлежит большая часть наблюдений), то 
возникает известный парадокс, когда модель обла-
дает высокой правильностью при низкой точности 
предсказаний [5, 6].  

F1-мера – показатель, обеспечивающий некото-
рый баланс между точностью и полнотой (является 
средним гармоническим между точностью и пол-
нотой):  

1-мера 2 точность полнота /

/ (точность полнота).

F = ⋅ ⋅

+
 

Этот показатель означает корректность полу-
ченных положительных предсказаний, он показыва-
ет, какое количество классифицированных как по-
ложительные наблюдений являются истинно поло-
жительными. 

Анализируя рассмотренные показатели в сово-

купности, отметим, что показатель правильности  
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в наибольшей степени интуитивно понятен. Баланс 

между точностью и полнотой (компромисс между 

«оптимистичностью» и «пессимистичностью» мо-

дели) достигается в показателе F1-мера.  

Применение метрик бинарного классифика-

тора для оценки достоверности контроля со-

стояния парка СТС. Опишем применение метрик 

на примере классической стационарной полумар-

ковской модели эксплуатации парка СТС [1, 4]: 

4 5 1π (1 α)π π 0+ − − = ; 
1 2( )π π 0KF T − = ; 

2 6 3π π π 0+ − = ; 

3 7 4(1 β)π π π 0− + − = ; [ ] 1 5
1 ( ) π π 0

K
F T− − = ; 

3 6βπ π 0− = ; 

5 7απ π 0− = , где π1 – вероятность нахождения в ра-

ботоспособном состоянии; π2 – вероятность нахож-

дения в состоянии отказа; π3 – вероятность нахож-

дения в состоянии поверки отказавшей СТС; π4 – 

вероятность нахождения в состоянии восстановле-

ния (ремонта); π5 – вероятность нахождения в со-

стоянии поверки работоспособной СТС; π6 – веро-

ятность нахождения в состоянии необнаруженного 

отказа; π7 – вероятность нахождения в состоянии 

ложного отказа; α – вероятность ложного отказа 

при поверке; β – вероятность необнаруженного 

отказа при поверке; F(T)
 
– функция распределения 

отказов за время T; F(TK) – вероятность отказа на 

интервале времени между поверками. 

В приведенных выше формулах для метрик би-

нарного классификатора вместо количества образ-

цов СТС, находящихся в соответствующих техни-

ческих состояниях, будем использовать вероятно-

сти нахождения в этих состояниях: 

1 1 2 1 2 6 7правильность (π π ) / (π π π π );d= = + + + +  

2 1 1 6точность π / (π π )d= = + ; 

3 1 1 7полнота π / (π π );d= = +  

41-мера 2 точность полнота /

/ (точность полнота).

F d= = ⋅ ⋅

+
 

Результаты моделирования достоверности 

контроля технического состояния 

Известно [1, 4], что существуют оптимальное 

значение интервала между поверками TK (ИМП)  

и оптимальное значение относительного допуска  

δ на ОП (контролируемый параметр), при которых 

достигается максимальное значение коэффициента 

готовности KA СТС к применению. На рис. 1 пред-

ставлены соответствующие графики для коэффи-

циента готовности KA для случая экспоненциаль-

ного закона распределения отказов с интенсивно-

стью λ = 0,0005. 

 

     
 

а            б 

 

Рис. 1. Зависимости коэффициента готовности при λ = 0,0005: a – от интервала между поверками; 

б – от относительного допуска на контролируемый параметр 

 

Fig. 1. Dependencies of the readiness coefficient at λ = 0.0005: a – from period between verification;  

б – from the relative tolerance for the controlled parameter 

 

Здесь коэффициент готовности к применению 
7

1 1

1

π ψ π ψA i i

i

K
=

= ∑ , где ψi – средние времена нахож-

дения СТС в соответствующих состояниях πi. На 

рис. 1 смоделирован процесс проведения поверки  

в штатной ситуации. 

Зависимости показателей достоверности и коэф-

фициента готовности от допуска на определяющий 

параметр при λ = 0,0005 представлены на рис. 2. 
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Рис. 2. Зависимости показателей достоверности и коэффициента готовности от допуска  

на определяющий параметр при λ = 0,0005 

 

Fig. 2. Dependences of reliability indicators and readiness coefficient  

on the tolerance of the determining parameter at λ = 0.0005 

 

Видно, что показатели достоверности незначи-

тельно убывают, а коэффициент готовности дости-

гает максимума при δ = 0,1, который в масштабе 

графика почти не заметен. Показатели d1 и d3 прак-

тически совпадают, поскольку вероятности отказа 

и необнаруженного отказа – достаточно малые ве-

личины.  

Зависимости показателей достоверности от 

ИМП приведены на рис. 3. 

 

 
 

Рис. 3. Зависимости показателей достоверности от ИМП T при λ = 0,0025  

 

Fig. 3. Dependences of reliability indicators on the PBV T at λ = 0.0025  

 

Отметим, что показатели правильности и пол-

ноты монотонно убывают, а показатель точности и 

F1-мера – возрастают. Коэффициент готовности 

убывает от 0,857 до 0,477. 
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На рис. 2 и 3 моделируются внештатные ситуа-

ции, когда поверка осуществляется при различных 

(не оптимальных) значениях ИМП и допуска на 

контролируемый параметр. 

Зависимости показателей достоверности от ин-

тенсивности отказов приведены на рис. 4. 

 

  
 

Рис. 4. Зависимости показателей достоверности от интенсивности отказов λ 

 

Fig. 4. Dependence of reliability indicators on failure rate λ 

 

Видно, что все показатели монотонно убывают, 

при этом коэффициент готовности также монотон-

но убывает от 0,974 до 0,445, т. е. увеличение ин-

тенсивности отказов приводит к ухудшению всех 

показателей достоверности.  

Зависимости показателей достоверности от вре-

мени восстановления (ремонта) представлены на 

рис. 5. 

 

  
 

Рис. 5. Зависимости показателей достоверности от времени восстановления Tв  
 

Fig. 5. Dependences of reliability indicators on recovery time Tв 
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Отметим, что показатели правильности и пол-

ноты монотонно убывают, а показатель точности  

и показатель F1-мера – возрастают. При этом ко-

эффициент готовности убывает от 0,987 до 0,836. 

На рис. 4 и 5 моделируются внештатные ситуа-

ции, когда отказы происходят с большой интен-

сивностью и время восстановления (ремонта) до-

статочно велико.  

Из представленных результатов моделирования 

можно сделать вывод, что наибольшее влияние на 

показатели достоверности и коэффициент готовно-

сти оказывают периодичность поверки и интен-

сивность отказов. Оператор, принимающий реше-

ние по дальнейшему управлению парком СТС  

в части МО, может строить прогнозы с учетом тем-

пов изменения указанных показателей.  

 

Обсуждения 

Представленные в статье показатели достовер-

ности применимы не только для классической мо-

дели функционирования СТС, но и для более слож-

ных моделей, например, описанных в [8–10]. В [8, 9] 

рассмотрены полумарковские стационарные модели 

эксплуатации с двухуровневым МО, включающие 

два контура контроля (метрологический самокон-

троль и обычную поверку), а в [10] – модель парка 

СТС, которая включает несколько групп деградации 

(риска) и по одному контуру поверки в каждой 

группе. Модели [8–10] имеют, как правило, по не-

сколько одноименных основных технических состо-

яний (например, состояние, работоспособное после 

поверки и после самоконтроля, состояние ложного 

отказа после поверки и после самоконтроля и т. д.). 

Для построения предложенных в статье показателей 

достоверности  вероятности  одноименных  состоя- 

ний в моделях [8–10] следует суммировать.  

Кроме рассмотренных в статье 4-х метрик би-

нарного классификатора в задачах бинарной клас-

сификации используются и другие метрики, 

например, применяется ROC-кривая, PR-кривая  

и т. д. [5, 6]. В задачах управления парком СТС  

с МО последние две метрики малоэффективны, по-

скольку на практике пороговые значения для ОП 

СТС ограничены, а для ROC- и PR-кривых порого-

вые значения должны меняться во всем диапазоне 

изменения маркеров [5, 6].   

 

Заключение 

Предложены и проанализированы показатели 

достоверности контроля состояний СТС с МО. На 

примере классической полумарковской модели 

эксплуатации парка СТС продемонстрированы 

зависимости указанных показателей от периодич-

ности поверки, допуска на ОП, интенсивности от-

казов и продолжительности восстановления.  

Применение более широкого спектра показате-

лей достоверности, чем традиционных метрологи-

ческих показателей (вероятностей ложного и необ-

наруженного отказов при поверке), позволяет 

строить совместные оценки коэффициента готов-

ности и достоверности контроля состояний парка 

СТС с МО, функционирующих в разных режимах 

и при разных условиях, что дает возможность опе-

ратору проектировать различные варианты страте-

гий управления парком СТС с МО.  

Полученные результаты могут быть внедрены  

и использованы в системе поддержки принятия 

решения при оперативном управлении парком 

СТС, в том числе при дистанционном, автоматиче-

ском или автоматизированном управлении. 
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