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Abstract. In the ever-evolving landscape of network security, the sophistication of cyber-attacks, especially Denial
of Service (DoS) and Distributed Denial of Service (DDoS) attacks, poses a formidable challenge to intrusion detec-
tion systems. Recognizing the longstanding application of CatBoost in various domains, this study explores its novel
optimization for network intrusion detection, a critical area in need of advanced solutions. Leveraging the strengths
of CatBoost in handling categorical data and imbalanced datasets, we meticulously adapt the classifier to meet the
complex demands of distinguishing between DoS, DDoS, and benign traffic within the comprehensive CICIDS2017
and CSE-CIC-IDS2018 datasets. This research is an attempt to refine the learning efficiency and detection capabilities
of CatBoost through the implementation of advanced feature selection and data preparation, contributing to the field
by improving detection accuracy within real-time intrusion detection systems. The results show a notable improve-
ment in performance, underscoring the classifier's role in advancing cybersecurity measures. Furthermore, the study
paves the way for future exploration into adversarial machine learning and automated feature engineering, fortifying
the resilience and adaptability of intrusion detection systems against the backdrop of a rapidly changing cyber threat
landscape. These efforts provide solid approaches to address the current challenges in network security, signaling
a move towards more refined and dependable intrusion detection methods.
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AHHOTanus. B mocTosiHHO pa3BuBaromeMcs TaHmadTe yrpo3 ceTeBoil 0e30MacHOCTH CI0KHOCTh KHOepaTak, 0co-
OEHHO aTak TUIa «O0TKa3 B oOciyxuBaHum» (DoS) 1 pacnpeneneHHBIX aTak «paclpeneIeHHas aTaka 0Tkasa B 00CIy-
xuBanum» (DDoS), mpencrasnser co0oil 3HAUNTETBHBINA BBI30B JUIA CHCTEM OOHApY>KCHHS BTOPKEHHUH. YUMTHIBas
Jloaroe mpuMeHeHue oubanoTeku rpaaueHTHoro Oycrtunra CatBoost B pa3nuuHbIX 00sacTsX, B JAHHOM HCCIIEAOBA-
HHUM PaccMaTpUBaeTCs ONTHMH3ALUS €€ aArOpuTMa s OOHAPY>KEHHUsI CETEBBIX BTOPKEHHH — KPUTHUECKH BaXKHOM
obnacTy, Hy)KJaroLeicss B nepeioBbIX perieHusx. Mcnonb3ys npeumymiectBa CatBoost B 06paboTke kKaTeropuab-
HBIX JJAaHHBIX U HecOaJaHCUPOBAHHBIX HAOOPOB JaHHBIX, MBI TIIATEIHHO aJalTHPYEM 3TOT KIacCH(UKATOp IS YHO-
BJIIETBOPEHUSI CIIOXKHBIX TpeOoBaHUH pazmmueHus Mexay DoS, DDoS u 6iaronagexsHsIM TpadUKOM B paMKax 00-
mmpHbIX Habopos manHbIx CICIDS2017 u CSE-CIC-IDS2018. D10 HccnenoBanne — MOMBITKA YIYYIIATH (P GEKTUB-
HOCTB 00y4eHHs ¥ BO3MOXKHOCTH OOHapyXeHHs: BTop>keHuit anropurmom CatBoost B peansHOM BpemeHH. Pe3ynbraTsr
[IOKa3bIBAIOT 3aMETHOE YJIYHYIICHHE IIPOM3BOAUTENIBHOCTH, NMOAYEPKUBAs POJb AIrOpuTMa Kiaccu(pUKaTopa B Ipo-
JBIKEHHN Mep kubepbe3omacHocTH. Kpome Toro, mccieoBaHue NMPOKNAAbIBAET MyTh A JadbHEHIIEro M3ydeHHs
COCTA3aTENbHOT0 MAIIMHHOTO OOYYEHHs M aBTOMAaTH3MPOBAHHOTO WHXXMHHPHMHTA MPH3HAKOB, YKPEIIAs yCTOHuH-
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Introduction

In the evolving digital landscape, the escalation
of sophisticated cyber threats, notably Denial of Ser-
vice (DoS) and Distributed Denial of Service (DDoS)
attacks, presents a significant challenge to cybersecuri-
ty defenses [1, 2]. The primary obstacle is the increas-
ing complexity in distinguishing malicious network
traffic from the vastly more prevalent benign activities,
a task complicated by the rapid evolution of cyberat-
tack methodologies [3]. This challenge is further inten-
sified by the inherent imbalance in network traffic
datasets, where benign traffic significantly outnumbers
instances of attacks, thus complicating the training and
accuracy of detection models [4].

In response to this critical challenge, our research
proposes an innovative approach through the applica-
tion of the CatBoost classifier, a machine learning al-
gorithm known for its proficiency in managing cate-
gorical data and datasets with imbalanced classes [5].
Utilizing the comprehensive and diverse scenarios
presented in the CICIDS2017 and CSE-CIC-IDS2018
datasets [6, 7], this study aims to significantly enhance
the accuracy and efficiency of intrusion detection sys-
tems. Our methodology focuses on meticulously opti-
mizing the CatBoost classifier to accurately identify
and classify DoS, DDoS, and benign traffic, thereby
overcoming the challenges posed by dataset imbalance
and the subtleties of network behavior.

Despite significant advances in technology aimed at
thwarting and mitigating DDoS (Distributed Denial
of Service) attacks, data from NETSCOUT's DDoS
Threat Intelligence Report indicates a concerning trend:
around 7.9 million DDoS attacks were recorded in the
initial six months of 2023. This figure marks a 31%
increase compared to the previous year, underscoring
the critical and growing necessity for enhancing intru-
sion detection methodologies. Our work contributes to
this pressing need by significantly improving the mod-
el's performance in detecting network intrusions through
refined CatBoost classifier configurations and data
preparation and feature selection techniques.

The contributions of our research are twofold:
Firstly, it offers a scalable, precise, and efficient solu-
tion to bolster cybersecurity measures against evolving
digital threats. Secondly, initial results suggest a nota-
ble improvement in detection accuracy, contributing to
advancements in the standards for real-time intrusion
detection systems. This paper outlines our comprehen-
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sive methodology, from data analysis and model tun-
ing to the validation of our approach, demonstrating
a significant stride towards mitigating the challenge
of accurately identifying cyber threats within highly
imbalanced and complex datasets.

Related work

The domain of network intrusion detection is wit-
nessing rapid evolution, propelled by advanced ma-
chine learning and deep learning techniques. This sec-
tion critically reviews seminal contributions to the
field, situating our research within this dynamic land-
scape and underscoring the distinctive advantages
of our approach with the CatBoost classifier.

Manimurugan et al. [8] leveraged a Deep Belief
Network (DBN) algorithm to develop a deep learning-
based intrusion detection system, applied to the
CICIDS2017 dataset. Their work demonstrates the
potential of deep learning in identifying a broad spec-
trum of cyber threats, achieving notable success across
various attack vectors. This underscores the increasing
relevance of deep learning in cybersecurity, yet it also
highlights a critical gap-efficient handling of imbal-
anced datasets and categorical data.

Exploring the effectiveness of Machine Learning
(ML) techniques, Farhat and colleagues [9] investigat-
ed the detection of DoS/DDoS attacks within cloud
environments using the CICIDS2017 dataset. Their
findings spotlight the eXtreme Gradient Boosting
(XGBoost) algorithm's high performance, validating
the potential of ML in this context. However, they also
signal the need for ML techniques that expand the de-
tectable attack spectrum and enhance real-time detec-
tion capabilities.

Abu Bakar et al. [10] presented an agent-based de-
tection system focusing on automatic feature extrac-
tion and selection for DDoS attack detection. Their
methodology achieved significant accuracy improve-
ments, showcasing the power of combining ML tech-
niques with feature selection.

Dora et al. [11] explored the synergy between
Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) models for DDoS attack
detection, emphasizing the importance of optimal fea-
ture selection. While their approach demonstrates the
potential of deep learning models in cybersecurity, it
also reveals the complexity of deploying such models
in real-time environments.
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Building on existing research, our application
of the CatBoost classifier not only enhances network
intrusion detection by addressing the challenges
of imbalanced datasets and categorical data but also
demonstrates superior results with a high processing
speed. This combination of improved accuracy and
efficiency positions our study as a valuable advance-
ment in the pursuit of more adaptable, precise, and
swift cybersecurity solutions.

Datasets

Our investigation leveraged the CICIDS2017 and
CSE-CIC-IDS2018 datasets, reputable sources of simu-
lated network traffic data that incorporate a wide range
of cyberattack scenarios. These datasets were developed
collaboratively by the Canadian Institute for Cybersecu-
rity and the Communications Security Establishment
(CSE), embodying a diverse array of both benign and
malevolent network behaviors which are essential for
training robust intrusion detection systems.

CICIDS2017 offers a rich mix of network traffic, in-
cluding a week-long simulation of regular activities
peppered with orchestrated attacks. In contrast, the
CSE-CIC-IDS2018 dataset is known for its inclusion
of evolved cyber threats, reflecting the progressive com-
plexity of cyberattacks [6, 7].

Each dataset contains 79 features that describe the
complex nature of network traffic in detail, allowing

for a sophisticated analysis of network behavior. These
features are instrumental in characterizing the various
aspects of network behavior, facilitating a nuanced
approach to the classification of network activities. In
our analysis, network activities were aggregated into
three overarching classes for simplicity and focus:

— “Benign”: Normal network traffic, devoid of any
malicious intent;

— “DoS” (Denial of Service): Aggregates various
forms of DoS attacks such as Hulk, GoldenEye, and
Slowloris;

— “DDoS” (Distributed Denial of Service): Encom-
passes various DDoS strategies including those using
High Orbit Ion Cannon (HOIC), Low Orbit Ion Can-
non (LOIC) over HTTP and UDP, and LOIT.

The classification reflects a targeted approach to
discern the intricate patterns of network attacks and
provides a streamlined framework for the development
of detection algorithms. By consolidating similar at-
tack methodologies into broader categories, our model
can efficiently learn to differentiate between benign
traffic and malicious attacks, which is paramount for
deploying effective real-time intrusion detection sys-
tems. Table 1 presents a comparison of instance counts
across the CICIDS2017 and CSE-CIC-IDS2018 da-
tasets, revealing the distribution between benign and
malicious traffic.

Table 1

Comparison of Instance Counts by Class in Network Intrusion Datasets

Class Number of Instances
CICIDS2017 | CSE-CIC-IDS2018 | CICIDS2017 + CSE-CIC-IDS2018
Benign 537,749 9,176,239 9,713,988
DDOS 128,027 1,263,933 1,391,960
DOS 252,661 654,300 906,961

The numbers in Table 1 represent the counts of in-
stances for each class in the respective datasets.

The deliberate selection of these datasets, coupled
with the comprehensive set of features they offer, lays
a solid foundation for the development and validation
of a sophisticated intrusion detection model. Our
methodology is designed to leverage the depth and
breadth of the available data, ensuring robustness and
efficacy in the detection of network anomalies.

Data preparation

To elevate the reliability of our intrusion detection
outcomes, it's crucial to enhance our dataset's integrity
through a comprehensive data preparation strategy.
This essential stage includes three key actions: normal-
izing outliers, correcting negative values, and refining
the dataset's framework. Adjusting for outliers helps
maintain the balance and genuine nature of the dataset,
ensuring its core characteristics are preserved. Correct-
ing negative values by averaging out column data aids
in creating a consistent dataset, which in turn, supports

more accurate distinctions between benign and mali-
cious network behavior. Refining the structure of the
dataset is critical for improving our ability to classify
network activities accurately. These preparatory
measures not only serve to optimize the dataset but
also significantly bolster the reliability and sharpness
of our detection mechanisms. Emphasizing the da-
taset's integrity through this detailed process is funda-
mental in advancing our system's efficacy and trust-
worthiness, an imperative in the continuously advanc-
ing field of cybersecurity.

Feature selection strategies

In the intricate domain of cyber intrusion detection,
the strategic selection of features is paramount. These
features, crucial for identifying data patterns, must be
relevant, distinct, and enhance the model's predictive
accuracy [12]. This selection process bolsters machine
learning model efficiency, reduces computational load,
and simplifies model comprehension. Initial steps in-
clude the elimination of constant features through var-
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iability assessment, using standard deviation measures
to discard those with no variation. Non-contributory
attributes, like 'timestamp', are also excluded to avoid
introducing unnecessary variability. Further, the exam-
ination of feature relationships through Spearman
rank-order correlation and the use of heatmaps and
hierarchical clustering, especially employing the Ward
linkage method, facilitate the understanding of feature
interconnections and groupings. Finally, cluster-based
feature consolidation employs a correlation-based

clustering approach to group features, selecting the
most representative feature from each cluster to main-
tain essential information while reducing dimension-
ality, thereby ensuring the selected features aptly rep-
resent each cluster's characteristics.

The Fig. 1 visualizes the rigorous process of feature
selection, from the initial removal of constant features to
the final stage of cluster-based feature consolidation,
culminating in a refined set of significant features.

Final Features
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Fig. 1. Feature selection process and correlation analysis in network traffic data

Following this comprehensive selection process,
the dataset is refined to its most significant 32 features.

This refinement not only simplifies the dataset but
also prepares it for a more streamlined and effective
model training process. The resultant set of features is
both manageable and rich in information, striking an
optimal balance between computational efficiency and

the accuracy of the predictive model.

Stratified sampling

In our detailed exploration, we employed a strati-
fied sampling method to segment the dataset into train-
ing (80%), validation (10%), and testing (10%) por-
tions, as outlined in Table 2.

Table 2

Distribution of Network Traffic Classes in Training, Evaluation, and Testing Sets

Set Benign DOS DDOS
Train 7,771,190 725,569 1,113,568
Eval 971,399 90,696 139,196
Test 971,399 90,696 139,196

The values in Table 2 represent counts of instances
for each class.

This method was carefully chosen to ensure propor-
tional representation of each class across these seg-
ments, adhering to the formula for balanced allocation:

=N - N/ Ny (1)

with in the equation (1), n; — represents the sample size
allocated to each class & within a given subset; N is the
total number of samples in that subset; N, — indicates
the total number of samples for class k across the da-
taset, and N,, is the total number of samples in the
dataset [13].

The approach described ensures that each class — Be-
nign, DoS, and DDoS — is represented proportionally
within each subset (training, validation, and testing)
of the dataset. This means that the stratified sampling
method is designed to maintain the same distribution of
classes across all subsets as is present in the full dataset.

Model configuration and training

In our exploration of machine learning applications
within cybersecurity, particularly for network intrusion
detection, the configuration and subsequent training
of the model are critical to its success. For this purpose,
we chose the CatBoostClassifier, a decision tree-based
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ensemble model noted for its exceptional performance
with categorical data and its adept handling of imbal-
anced datasets [5].

Central to our model's configuration was the imple-
mentation of class weights, specifically set to {“Benign”:
1.2366609232305477, “DDOS”: 8.630211177045318,
“DOS”: 13.245228227777096}. These weights were
carefully calculated to counterbalance the dispropor-
tionate representation of classes within our dataset,
ensuring that the model adequately learns from each
category despite the inherent imbalance. Such a meas-
ure is crucial in cybersecurity contexts, where failing
to detect rare but dangerous threats could have signifi-
cant repercussions.

Our model configuration was meticulously designed
to optimize performance while preventing overfitting —
a critical consideration given the complexity of our task.
After thorough experimentation, we configured the
model with 1,300 iterations. This specific number
of iterations was chosen to strike an optimal balance
between adequate learning and computational efficien-
cy. Extensive testing indicated that fewer iterations led
to underfitting, while significantly more iterations did
not yield proportional performance improvements and
risked overfitting. We set the learning rate to 0.1 to en-
sure robust model training without overfitting, comple-
mented by a depth of 6 to capture complex patterns
within the data effectively. The model employed a Mul-
tiClass loss function, suitable for our multi-class classi-
fication task, and was trained on a GPU to leverage
accelerated computational capabilities, thereby reduc-
ing training time.

Recognizing the importance of reproducibility and
consistency in scientific research, we fixed the random
seed at 42. Additionally, we adjusted the L2 leaf regu-
larization to 4 and maintained a border count of 1,024,
balancing the model's accuracy with training speed.
Extensive experimentation showed that 1,024 provided

the optimal balance, as lower counts reduced precision
and higher counts unnecessarily increased training
time. To further mitigate overfitting, we implemented
early stopping after 100 rounds without improvement,
allowing the model to halt training once no significant
gain in performance was observed, thereby conserving
computational resources.

The choice of evaluation metric was Total F1, se-
lected for its relevance in assessing models trained on
imbalanced datasets like ours, where precision and
recall are equally important. The model's configuration
also included specific class weights for “Benign”,
“DDOS”, and “DOS” classes, derived from their dis-
tribution in the dataset, to address the inherent class
imbalance and ensure fair representation of each class
during the learning process.

During training, the model underwent evaluation
on a separate validation set, with an early stopping
mechanism based on the Total F1 metric to prevent
overfitting and ensure optimal performance. This
method led to notable achievements: a best test Total
F1 score of 0.9999911775 at iteration 735. This strate-
gy not only validated our hyperparameter selection but
also showcased the CatBoost algorithm's capability to
manage complex, imbalanced datasets effectively.

Result analysis and discussion

In contexts where it's essential to categorize into
various groups, confusion matrices are key to as-
sessing the performance of machine learning algo-
rithms on a testing dataset. This is especially true for
evaluating network intrusion detection systems, where
such matrices are vital for gauging the system's capa-
bility to differentiate between diverse forms of net-
work activity, including normal traffic, Distributed
Denial of Service (DDoS), and Denial of Service
(DoS) attacks, as illustrated in Table 3.

Table 3
Confusion Matrix of Intrusion Detection System Predictions on the test set
Actual Class Pred Benign Pred DDOS Pred DOS
True Benign 971,369 8 22
True DDOS 1 139,195 0
True DOS 2 0 90,694

Table 3 shows the count of true and predicted in-
stances for each class, providing insight into the per-
formance of the intrusion detection system.

Derived from the confusion matrix, we obtain es-
sential metrics for evaluating the performance of each
class within our network intrusion detection analysis:

Accuracy = (TP + TN) / (TP + FN + TN + FP); (2)
Precision=TP / (TP + FP), 3)

Recall = TP / (TP + FN); 4

F1=2 - (Precision - Recall) / (Precision + Recall). (5)

Accuracy (2): this measures the proportion of true
results, both true positives and true negatives, among
the entire set of samples.

Precision (3): this metric assesses the fraction
of true positive predictions in relation to all positive
predictions made, serving as an indicator of the mod-
el's precision in avoiding false positive errors.

Recall (4): this quantifies the fraction of true posi-
tives detected out of all actual positives, evaluating the
model's capacity to correctly identify positive instances.

F1 Score (5): representing the weighted average
of Precision and Recall, this metric provides a bal-
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anced view of both, offering a singular measure of the
model's overall performance.

These metrics are computed for each traffic type-
benign, DDoS, and DoS-and then averaged to furnish
a holistic view of model performance. These formulas
relate to the performance metrics of the model, specif-
ically Accuracy (2), Precision (3), Recall (4), and F1
Score (5).

The performance evaluation of the CatBoost classi-
fier on the test set highlights its exceptional accuracy
of 99.9973% and demonstrates its effectiveness in
network intrusion detection. The analysis reveals the
classifier's proficiency in distinguishing between be-
nign traffic, DDoS, and DoS attacks, evidenced by the
high precision, recall, and F1 scores for each category
as seen in Table 4.

Table 4

Classification Metrics for Network Traffic Intrusion Detection on the test set

Class Precision Recall F1-score Support
Benign 1.00000 0.999969 0.999983 971,399
DDOS 0.999943 0.999993 0.999968 139,196
DOS 0.999757 0.999978 0.999868 90,696
accuracy — — 0.999973 1,201,291

This evaluation, especially focusing on the F1 scores,
is critical in scenarios with imbalanced classes or signifi-
cant implications for false predictions. The results affirm
the model's robustness and reliability in accurately clas-
sifying different types of network traffic, underscoring
its value as a tool in enhancing cybersecurity measures.

Receiver Operating Characteristic (ROC) for each class
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Fig. 2 showcases the Receiver Operating Charac-
teristic (ROC) Curve and Precision-Recall curves for
our CatBoost model, tailored for multi-class classifica-
tion in network intrusion detection, encompassing be-
nign, DDoS, and DoS traffic types.

Precision-Recall Curve with Average Precision
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Fig. 2. ROC and Precision-Recall curve

The ROC Curve, included in this combined figure,
exhibits a macro-average Area Under the Curve
(AUC) of 1.00. This perfect AUC value highlights the
model's exceptional performance, illustrating an opti-
mal balance between the True Positive Rate and False
Positive Rate across all traffic categories. Such an
achievement signals the model's superior discrimina-
tive ability to distinctively separate positive from
negative class instances without confusion.

Moreover, the Precision-Recall curves, depicted
alongside the ROC Curve, display near-perfect Aver-
age Precision (AP) scores for each class. In the context
of our imbalanced test set, these curves are particularly
informative, offering a nuanced view of the model's
performance. The AP scores, nearing the ideal mark

70

of 1, emphasize the model's consistent precision across
varying levels of recall. This indicates the CatBoost
classifier's robustness in correctly identifying instances
of each class type-benign, DDoS, and DoS-with a high
true positive rate, further validating its efficacy as
a dependable tool for network intrusion detection.

The MCC scores, which will be detailed in an up-
coming table, underscore the remarkable efficacy
of our classifier within the multi-class framework
of Benign, DDOS, and DOS traffic types. Given the
MCC's value in evaluating performance, especially in
imbalanced datasets, these scores as seen in Table 5
reflect the classifier's precision and its strong correla-
tion between predicted and actual classifications.
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Table 5
Matthews Correlation Coefficient Scores for Network Intrusion Classification
Metric Benign DDOS DOS Average
MCC 0.9999 1.0000 0.9999 0.9999

This performance underlines the model's reliability
and accuracy, highlighting its suitability for deployment
in real-world network intrusion detection scenarios.

The analysis of feature importances from our trained

CatBoost classifier as seen in Fig. 3 reveals significant
insights into the factors most critical in distinguishing
between benign, DDOS, and DOS traffic types.

Feature Importances
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Fig. 3. Bar chart of feature importances in CatBoost classifier
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The top features, such as “fwd_seg size min”, “in-
it fwd win_byts”, and “dst port”, emerged as highly
influential, underscoring their pivotal role in the mod-
el's decision-making process. This prioritization re-
flects the model's reliance on specific aspects of net-
work traffic for accurate intrusion detection. Notably,
features related to packet size, initiation windows, and
destination ports were deemed most informative, high-
lighting the nuanced approach required to effectively
identify and classify network threats. The derived fea-

ture importance rankings offer a clear view into the
model's operational dynamics, guiding further refine-
ments and emphasizing areas of focus for enhancing
network security measures.

The performance analysis of CatBoost classifier, as
illustrated in Fig. 4, reveals its high accuracy in cate-
gorizing network traffic into “Benign”, “DDOS”, and
“DOS” segments, using a vast dataset containing
12,012,909 entries.
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Fig. 4. CatBoost classifier's speed and stability

71

JIjjeI) SHOMISU UL SYIB)E SO PuB SO(T JO UOTIIIIIP PadueApe 10 3soogie)) Suumngiyuod o} yoeordde uy mx g eAonuasyAy v znollep



Xaxoky3s A., ABkcentbena E. FO. IToxxon k Hactpoiike CatBoost 1uist mponsuHyToro ooHapyskenus arak DoS u DDoS B ceTeBoM Tpaduke

Becmuux Acmpaxanckozo 20¢y0apcmeennoz0 mexHuuecKozo yHugepcumema.
Cepusn: Ynpaenenue, epluuciumenbnas mexnuxka u ungpopmamuxa. 2024. No 3

ISSN 2072-9502 (Print), ISSN 2224-9761 (Online)

ROMHbIOmepHOe obecneyenue u 8bIYUCTUMETbHASL NEXHUKA

This evaluation, conducted over 200 iterations, uti-
lized a state-of-the-art computing setup that includes an
RTX 3080 GPU, an Intel Core i7 13700k CPU, and
32 GB of DDR5 RAM. The classifier achieved an out-
standing average processing speed 5,041,465 samples
per second. This level of consistency in processing
speed, with very little variation, highlights the classifi-
er's reliability. Such stable and rapid throughput is criti-
cal for real-time intrusion detection systems, proving the
classifier's efficiency in handling large datasets.

These metrics collectively affirm the CatBoost
classifier's robustness and accuracy in a critical appli-
cation domain like network intrusion detection. The

16-6+9 99901 Cross-Validation Accuracy Scores

Fold

1e-6+9.999e-1 Cross-Validation Recall Scores

Recall
2

10 15 20 25 30 35 40 45 50
Fold

Precision

precision in these results, especially considering the
dynamic and complex nature of cybersecurity threats,
demonstrates the model's advanced capability and
readiness for real-world applications. The high degree
of performance consistency across different metrics
highlights the effectiveness of our model configuration
and training approach, cementing the CatBoost classi-
fier's position as an advanced solution in the field
of cybersecurity.

The cross-validation results from CatBoost model
as seen in Fig. 5 are exceptionally promising, indicat-
ing a highly robust and reliable system for network
intrusion detection.

1e-6+9.998e-1 Cross-Validation Precision Scores

Fold

1e-6+9.999%-1 Cross-Validation F1 Scores

10 15 20 25 30 35 40 45 50
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d

Fig. 5. Consistently high performance indicators on five folds when detecting network intrusions using the proposed model:
a — Cross-Validation Accuracy Scores; b — Cross-Validation Precision Scores;
¢ — Cross-Validation Recall Scores; d — Cross-Validation F1 Scores

Across five folds, the model consistently achieved
near-perfect metrics, with accuracy, precision, recall,
and F1 scores all closely approximating 1.0. Such high
values across these metrics demonstrate the model's
exceptional capability in correctly identifying and clas-
sifying network traffic, including benign, DDOS, and
DOS activities. This consistency in performance high-
lights the effectiveness of the model's training and its
potential in deploying a real-world intrusion detection
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system with high confidence in its predictive accuracy.
In our study, leveraging the combined datasets
of CICIDS 2017 and CSE-CIC-IDS2018, the CatBoost
classifier has demonstrated high performance in net-
work intrusion detection, achieving overall accuracy,
precision, recall, and Fl-scores of approximately
99.9973, 99.9975, 99.9972and 99.9973%, respectively.
This achievement significantly surpasses the outcomes
reported in related work utilizing various techniques
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on the CICIDS 2017 dataset alone. Notable compari-
sons as seen in Table 6 include methods like DBN,
SVM, RNN, SNN, and FNN, which showed respecta-

ble results but did not approach the near-perfect scores
of our CatBoost model.

Table 6
Comparison between the proposed model and current research
Ref Dataset Technique | Accuracy Precision Recall F1-Score
DBN 96.67 95.21 97.34 0.9700
SVM 95.55 94.32 96.15 0.9500
[8] CICIDS 2017 RNN 94.40 93.91 95.59 0.9400
SNN 93.30 92.01 94.25 0.9300
FNN 92.25 91.08 91.13 0.9200
NB 80.84 81.12 80.84 0.8043
LR 84.13 86.04 84.13 0.8345
] CICIDS 2017 RF 98.96 98.97 98.96 0.9896
XGBoost 99.11 99.12 99.11 0.9912
[10] CICIDS 2017 KNN 99.87 99.84 N/A* 0.9987
[11] CICIDS 2017 CNN 96.70 97.59 N/A 0.9818
Ours | CICIDS 2017 + CSE-CIC-IDS2018 Catboost 99.9973 99.9975 99.9972 | 0.999973

* “N/A” indicates that the value is not available for the specific case.

Even algorithms like RF and XGBoost, while
reaching high accuracy levels up to 99.12%, still fell
short of the benchmarks set by our approach. The
KNN technique, while yielding an impressive F1-score
0f 99.87%, lacks the comprehensive performance vali-
dation across all metrics provided by our study. Simi-
larly, the CNN technique, despite its high F1-score of
98.18%, does not match the across-the-board excel-
lence of our CatBoost model.

Conclusion and future directions

Our research has successfully showcased the Cat-
Boost classifier's exceptional capability in detecting
network intrusions, effectively distinguishing between
DoS, DDoS, and benign traffic with remarkable accu-
racy. This achievement was made possible through
meticulous feature selection, hyperparameter optimiza-
tion, and class weight adjustment, alongside the utiliza-
tion of the comprehensive CICIDS2017 and CSE-CIC-
IDS2018 datasets. Our rigorous cross-validation pro-
cess further affirmed the model's reliability and robust-
ness. The classifier's real-time detection prowess marks

a significant leap forward in cybersecurity, offering
a scalable solution adept at navigating the complexities
of modern digital threats. This sets a solid foundation
for subsequent research endeavors and practical appli-
cations aimed at bolstering network security.

Looking forward, our focus will pivot to integrating
adversarial machine learning to enhance the resilience
of our classifier against complex threats and to auto-
mating feature engineering to dynamically refine pre-
dictive features. These initiatives are aimed at ensuring
the model's continuous adaptation to the evolving land-
scape of cyber threats, keeping our cybersecurity
measures at the forefront of technological innovation.
In essence, our study not only validates the effective-
ness of the CatBoost classifier in network intrusion
detection but also charts a course for future advance-
ments. By embracing adversarial learning and automat-
ed feature engineering, we aim to enhance our proac-
tive defenses against an ever-changing threat land-
scape, ensuring that our cybersecurity strategies remain
robust and forward-thinking.
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